检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过统一的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本(在scripts_modellink下)和配置(在examples/config下),并可通过统一的训练脚本一键式运行。训练脚本可判断是否完成
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过统一的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
(可选)Session鉴权 Session鉴权概述 Session模块的主要作用是实现与公有云资源的鉴权,并初始化ModelArts SDK Client、OBS Client。当成功建立Session后,您可以直接调用ModelArts的SDK接口。 ModelArts开发环境
SFT全参微调数据处理 SFT微调(Supervised Fine-Tuning)前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 这里以LLama2-70B为例,对于LLama2-7B和LLama2-13B,操作过程与LLama2-70B相同,只需修改对应参数即可。
SFT全参微调数据处理 SFT全参微调(Supervised Fine-Tuning)前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 下载数据 SFT全参微调涉及的数据下载地址:https://huggingface.co/datasets/tats
Lite Cluster使用流程 ModelArts Lite Cluster面向k8s资源型用户,提供托管式k8s集群,并预装主流AI开发插件以及自研的加速插件,以云原生方式直接向用户提供AI Native的资源、任务等能力,用户可以直接操作资源池中的节点和k8s集群。本文旨在帮助您了解Lite
预训练数据处理 训练前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 Alpaca数据处理说明 数据预处理脚本preprocess_data.py存放在代码包的“llm_train/AscendSpeed/ModelLink/tools/”目录中,脚本具体内容如下。
使用Prometheus查看Lite Cluster监控指标 Prometheus是一款开源监控工具,ModelArts支持Exporter功能,方便用户使用Prometheus等第三方监控系统获取ModelArts采集到的指标数据。 本章节主要介绍如何通过Prometheus查看Lite
使用PyCharm手动连接Notebook 本地IDE环境支持PyCharm和VS Code。通过简单配置,即可用本地IDE远程连接到ModelArts的Notebook开发环境中,调试和运行代码。 本章节介绍基于PyCharm环境访问Notebook的方式。 前提条件 本地已安装2019
预训练数据处理 训练前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 这里以Llama2-70B为例,对于Llama2-7B和Llama2-13B,操作过程与Llama2-70B相同,只需修改对应参数即可。 Alpaca数据处理说明 数据预处理脚本preprocess_data
基于MindSpore Lite的模型转换 迁移推理业务的整体流程如下: 模型准备 转换关键参数准备 模型转换 推理应用适配 主要通过MindSpore Lite(简称MSLite)进行模型的转换,进一步通过MindSpore Runtime支持昇腾后端的能力来将推理业务运行到昇腾设备上。
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
预训练数据处理 训练前需要对数据集进行预处理,转化为.bin和.idx格式文件,以满足训练要求。 Alpaca数据处理说明 数据预处理脚本preprocess_data.py存放在代码包的“llm_train/AscendSpeed/ModelLink/tools”目录中,脚本样
ModelArts Standard使用流程 本章节旨在帮助您了解ModelArts Standard的基本使用方法,帮助您快速上手ModelArts服务。 面向熟悉代码编写和调测,熟悉常见AI引擎的开发者,ModelArts不仅提供了在线代码开发环境,还提供了从数据准备、模型训
GPT-2基于Server适配PyTorch GPU的训练推理指导 场景描述 本文将介绍在GP Ant8裸金属服务器中,使用DeepSpeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。 背景信息 Megatron-DeepSpeed
配置节点参数控制分支执行 功能介绍 支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过
自定义脚本代码示例 从OBS中导入模型文件创建模型时,模型文件包需符合ModelArts的模型包规范,推理代码和配置文件也需遵循ModelArts的要求。 本章节提供针对常用AI引擎的自定义脚本代码示例(包含推理代码示例)。模型推理代码编写的通用方法及说明请见模型推理代码编写说明。
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC