检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
从OBS目录导入数据规范说明 导入数据集时,使用存储在OBS的数据时,数据的存储目录以及文件名称需满足ModelArts的规范要求。 当前只有“图像分类”、“物体检测”、“图像分割”、“文本分类”和“声音分类”标注类型支持按标注格式导入。 其中,“表格”类型的数据集,支持从OBS、
在开发环境中部署本地服务进行调试 可以通过部署本地服务来进行调试,即在导入模型或模型调试后,在开发环境Notebook中部署Predictor进行本地推理。 只支持使用ModelArts Notebook部署本地服务。 开发环境本地服务Predictor和在线服务Predictor
创建团队标注任务 如果您在创建标注作业时,即启用团队标注,且指派了某一团队负责标注,系统将默认基于此团队创建一个标注任务。您可以在创建数据标注任务后,在“我创建的”页面查看此任务。 您还可以重新创建一个团队标注任务,指派给同一团队的不同成员,或者指派给其他标注团队。 团队标注作业的创建方式
通过Token认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方式一
使用CES监控Lite Server资源 场景描述 Lite Server的监控能力依赖于CES云监控服务。本文主要介绍如何对接CES云监控服务,对Lite Server上的资源和事件进行监控。 监控方案介绍 监控概述请参考BMS官方文档。除文档所列支持的镜像之外,目前还支持Ubuntu20.04
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud
OBS客户端异常。 联系服务运维人员解决。 400 ModelArts.3572 Invalid OBS URL {url}. OBS路径{路径}格式不合法。 检查OBS路径是否设置正确。
调用MaaS部署的模型服务 在ModelArts Studio大模型即服务平台部署成功的模型服务支持在其他业务环境中调用。 约束限制 只有“状态”是“运行中”的模型服务才支持被调用。 步骤1:获取API Key 在调用MaaS部署的模型服务时,需要填写API Key用于接口的鉴权认证
从0-1制作自定义镜像并创建AI应用 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为AI应用。本文详细介绍如何使用自定义镜像完成AI应用的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在本地制作自定义镜像包
将Notebook的Conda环境迁移到SFS磁盘 本文介绍了如何将Notebook的Conda环境迁移到SFS磁盘上。这样重启Notebook实例后,Conda环境不会丢失。 步骤如下: 创建新的虚拟环境并保存到SFS目录 克隆原有的虚拟环境到SFS盘 重新启动镜像激活SFS盘中的虚拟环境
从容器镜像中导入模型文件创建模型 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts。 约束与限制 关于自定义镜像规范和说明,请参见模型镜像规范。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。 前提条件
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
MiniCPM-V2.0推理及LoRA微调基于DevServer适配PyTorch NPU指导(6.3.910) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡对MiniCPM-V2.0进行LoRA微调及推理。本文档中提供的训练脚本,是基于原生
使用PyCharm ToolKit创建并调试训练作业 由于AI开发者会使用PyCharm工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境,ModelArts提供了一个PyCharm插件工具PyCharm ToolKit,协助用户完成SSH远程连接Notebook
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优