检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图1 复制资源ID 登录ModelArts管理控制台,选择“开发空间 > Notebook”。 在“Notebook”列表的上方搜索框中,在筛选条件中选择“ID”,并输入2中复制的资源ID,查找到该资源。
步骤四:创建新版自动学习图像分类项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“开发空间 > 自动学习”,进入自动学习总览页面。 单击选择“图像分类”创建项目。完成参数填写。 名称:自定义您的项目名称。
步骤四:创建新版自动学习图像分类项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“开发空间 > 自动学习”,进入自动学习总览页面。 单击选择“图像分类”创建项目。完成参数填写。 名称:自定义您的项目名称。
方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone 会下载历史版本占用磁盘空间。
--max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max_position_embeddings”和“seq_length”;如果设置过大,会占用过多显存,影响kvcache的空间。
--max-model-len:最大数据输入+输出长度,不能超过模型配置文件config.json里面定义的“max_position_embeddings”和“seq_length”;如果设置过大,会占用过多显存,影响kvcache的空间。
PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
workspace_id String 工作空间ID。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表15 Event 参数 参数类型 描述 create_time Long 事件创建时间。 description String 描述。
workspace_id String 作业所处的工作空间,默认值为“0”。 ai_project String 作业所属的AI项目,默认值为"default-ai-project"。
batch.volcano.sh/v1alpha1 kind: Job metadata: name: yourvcjobname # job名字,根据实际场景修改 namespace: default # 命名空间
方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。
在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。
在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。
PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
方法四:使用Git clone,官方提供了git clone repo_url 的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
在流水线并行中,为了减少气泡时间,会将一个step的数据切分成多个micro batch。 该值与TP和PP以及模型大小相关,可根据实际情况进行调整。 GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。
PPO通过引入一个称为“近端策略优化”的技巧来避免过大的策略更新,从而减少了训练过程中的不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。