检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
个人用户快速配置ModelArts访问权限 ModelArts使用过程中涉及到OBS、SWR等服务交互,需要用户配置委托授权,允许ModelArts访问这些依赖服务。如果没有授权,ModelArts的部分功能将不能正常使用。 约束与限制 只有主账号可以使用委托授权,可以为当前账号
成的开发环境保存成一个镜像。 方式一:保存镜像需要指定镜像名称、镜像标签、SWR服务的组织等信息,保存镜像需要等待几分钟时间,期间不能对Notebook有额外操作。 SWR服务的组织可以在SWR服务中进行创建,也可以使用SDK创建默认的SWR组织,默认最多只能创建5个组织。 在“
弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:CPU架构必须选择鲲鹏计算,镜像推荐选择EulerOS。 图1 购买ECS Step2 创建镜像组织 在SWR服务页面创建镜像组织。
推理应用适配 MindSpore Lite提供了JAVA/C++/Python API,进行推理业务的适配,并且在构建模型时,通过上下文的参数来确定运行时的具体配置,例如运行后端的配置等。下文以Python接口为例。 使用MindSpore Lite推理框架执行推理并使用昇腾后端主要包括以下步骤:
部署后的AI应用是如何收费的? ModelArts支持将AI应用按照业务需求部署为服务。训练类型不同,部署后的计费方式不同。 将AI应用部署为服务时,根据数据集大小评估模型的计算节点个数,根据实际编码情况选择计算模式。 具体计费方式请参见ModelArts产品价格详情。部署AI应
在创建自动学习项目页面,单击数据集输入位置右侧的“”按钮,进入“数据集输入位置”对话框。 单击“新建对象存储服务(OBS)桶”,进入创建桶页面,具体请参见《对象存储服务控制台指南》中的创建桶章节。 图1 快速创建OBS桶 桶创建完成后,选择对应桶名称,单击“新建文件夹”,在“新
执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
执行训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
预置框架启动文件的启动流程说明 ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。 本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。 Asc
项目资源隔离、多项目分开结算等功能。 如果您开通了企业项目管理服务的权限,可以在创建工作空间的时候绑定企业项目ID,并在企业项目下添加用户组,为不同的用户组设置细粒度权限供组里的用户使用。 如果您未开通企业项目管理服务的权限,也可以在ModelArts创建自己独立的工作空间,但是无法使用跟企业项目相关的功能。
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
rver/api.py文件参数: vim /home/ma-user/anaconda3/envs/PyTorch-2.2.0/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py 修改def
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
dtype类型不影响int8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 在使用OpenAI接口或vLLM接口启动推理服务时添加如下参数: --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
推理结果(2) Step5 调用API接口推理 进入源码根目录,安装依赖。 cd Qwen-VL pip install -r requirements_openai_api.txt 修改openai_api.py脚本,适配NPU。 # 在openai_api.py脚本的import torch下新增两行
指令监督微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件、自定义数据集,可以忽略此步骤。 未上传训练权重文件,具体参考上传代码和权重文件到工作环境。 使用自定义数据集训练未上传自定义数据集。具体参考上传自定义数据到指定目录章节并更新dataset_info
权限配置指南 》> 典型场景配置案例,查找授予OBS桶权限的指导。 获得OBS桶的读写权限后,您可以在Notebook中,使用moxing接口,访问对应的OBS桶,并读取数据。举例如下: import moxing as mox mox.file.copy_parallel('o
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset
["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=8, dataset=dataset