检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
申请体验盘古大模型服务 盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。
申请体验盘古大模型服务 盘古大模型为用户提供了五大模型的体验,包括NLP大模型、CV大模型、多模态大模型、预测大模型与科学计算大模型,用户可根据所需提交体验申请,申请通过后才可以体验盘古大模型功能。 登录盘古大模型套件平台。 在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进
大模型的安全性需要从哪些方面展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加
验平台预置的模型,请参见体验盘古预置模型能力。 盘古大模型套件在订购时分为模型资产和模型推理资产。 模型资产即盘古系列大模型,用户可以订购盘古基模型、功能模型、专业大模型。 基模型:基模型经过大规模数据的预训练,能够学习并理解多种复杂特征和模式。这些模型可作为各种任务的基础,包括
大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被
盘古自然语言大模型的适用场景有哪些 自然语言处理大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模
基于NLP-N2-基模型训练的单场景模型,可支持选择一个场景进行推理,如:搜索RAG方案等,具有32K上下文能力。 NLP大模型训练过程中,一般使用token来描述模型可以处理的文本长度。token(令牌)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
体验盘古驱动的应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 体验盘古预置模型能力前,请先完成申请体验盘古大模型服务操作。 登录盘古大模型套件平台,在左侧导航栏中选择“应用百宝箱”,进入“应用百宝箱”页面。
创建一个新的数据集 数据集是指用于训练模型或评估的一组相关数据样本。存储在OBS中的数据可以通过数据集的形式放置在到盘古平台中,便于管理。 在创建数据集之前,请先将数据上传至OBS平台。 上传数据至OBS 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,单击界面右上角“创建数据集”。
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
模型支持的区域 区域是一个地理区域的概念。我国地域面积广大,由于带宽的原因,无法仅依靠一个数据中心为全国客户提供服务。因此,根据地理区域的不同将全国划分成不同的支持区域。 盘古大模型当前仅支持西南-贵阳一区域。 图1 盘古大模型服务区域 父主题: 模型能力与规格
模型支持的操作 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评估、模型压缩和在线推理等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是各个模型支持的具体操作: 表1 模型支持的操作 模型 预训练 微调 模型评估 模型压缩
模型的基础信息 盘古大模型平台为用户提供了多种规格的模型,涵盖从基模型到功能模型的多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型
提供准确的结果。 迁移能力强 盘古大模型的迁移能力是其适应多变业务需求的关键。除了在已有领域中表现出色,它还能通过少量的新数据快速迁移到新的领域或场景。这种迁移能力使模型能够在面对新挑战时迅速调整和优化,提供适应新领域的服务。 通过微调技术,盘古大模型能够在保持原有优势的同时,融
为什么微调后的模型,只能回答在训练样本中学过的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘
如何评估微调后的模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评
训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。
为什么微调后的模型,回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大