检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--modelFile=model.mindir --inputShapes=1,3,224,224 --inDataFile=input_data.bin --device=Ascend --benchmarkDataFile=output_data.txt --accuracyThreshold=5 -
mem = nvidia_smi.nvmlDeviceGetMemoryInfo(handle) print(f"|Device {i}| Mem Free: {mem.free/1024**2:5.2f}MB / {mem.total/1024**2:5.2f}MB
除历史的checkpoint文件,会导致/cache目录逐步被用完。 实际存储空间足够,却依旧报错“No Space left on device”。可能是inode不足,或者是触发操作系统的文件索引缓存问题,导致操作系统无法创建文件,造成用户磁盘占满。 触发条件和下面的因素有关:
Configurations”,填入如下代码。 # 根据README说明文档,配置的Parameter入参如下,其中device_target="CPU"表示CPU环境运行,device_target="Ascend"表示在Ascend环境运行 "configurations": [
U卡信息。 nvidia-smi -pm 1 #该命令执行时间较长,请耐心等待,作用为启用持久模式,可以优化Linux实例上GPU设备的性能 nvidia-smi 安装CUDA。 wget https://developer.download.nvidia.com/compute/cuda/11
sh放到/opt目录,在实际启动任务的时候,使用以下命令启动任务即可: bash –x /opt/run.sh 把run.sh放到/root目录,可以在原镜像里增加一层,这一层就只是COPY这个run脚本。在基础镜像里可以一起把obsutil安装、配置好。参考如下dockerfile: FROM $your_docker_image_tag
并统计推理时间。执行的示例命令行如下。 #shell benchmark --modelFile=resnet50.mindir --device=Ascend 为了简化用户使用,ModelArts提供了Tailor工具便于用户进行Benchmark性能测试,具体使用方式参考Tailor指导文档。
集成在线服务API至生产环境中应用 针对已完成调测的API,可以将在线服务API集成至生产环境中应用。 前提条件 确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTP
sh放到/opt目录,在实际启动任务的时候,使用以下命令启动任务即可: bash –x /opt/run.sh 把run.sh放到/root目录,可以在原镜像里增加一层,这一层就只是COPY这个run脚本。在基础镜像里可以一起把obsutil安装、配置好。参考如下dockerfile: FROM $your_docker_image_tag
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 如果训练数据和代码经常变动,则不建议把数据、代码放到容器镜像里,避免频繁地构建容器镜像。
能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。
创建数据分发Sampler,使每个进程加载一个mini batch中不同部分的数据。 网络中相邻参数分桶,一般为神经网络模型中需要进行参数更新的每一层网络。 每个进程前向传播并各自计算梯度。 模型某一层的参数得到梯度后会马上进行通讯并进行梯度平均。 各GPU更新模型参数。 具体流程图如下: 图1 多机多卡数据并行训练
年9月15日期间的样本。 score 否 String 根据置信度筛选。 slice_thickness 否 String DICOM层厚,通过层厚筛选样本。 study_date 否 String DICOM扫描时间。 time_in_video 否 String 视频中某个时间。
randn(5, 3) print(x) available_dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") y = torch.randn(5, 3).to(available_dev)
Lite Cluster高危操作一览表 当您在CCE、ECS或BMS服务控制台直接操作ModelArts Lite Lite Cluster资源时,可能会导致资源池部分功能异常。下表可帮助您定位异常出现的原因,风险操作包括但不限于以下内容。 高危操作风险等级说明: 高:对于可能直
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表5
中。VS Code远程开发场景下,在Server端安装的插件不丢失。 Notebook中保存的镜像大小不超过35G,镜像层数不能超过125层。否则镜像会保存失败。 如果镜像保存时报错“The container size (xx) is greater than the threshold
在ModelArts运行态的Notebook容器中,采用动态挂载特性,将OBS对象存储模拟成本地文件系统。其本质是通过挂载工具,将对象协议转为POSIX文件协议。挂载后应用层可以在容器中正常操作OBS对象。 动态挂载适用于哪些使用场景 场景1:数据集预览和操作,将承载数据集的OBS挂载至Notebook中,可以像本地文件系统一样操作数据集。
中。VS Code远程开发场景下,在Server端安装的插件不丢失。 Notebook中保存的镜像大小不超过35G,镜像层数不能超过125层。否则镜像会保存失败。 如果镜像保存时报错“The container size (xx) is greater than the threshold
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A