检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
CPU环境,调用Model.configure_tf_infer_environ(device_type="CPU")完成配置,环境中只需配置运行一次。 GPU环境,调用Model.configure_tf_infer_environ(device_type="GPU")完成配置,环境中只需配置运行一次。
将废弃)。 device_id 昇腾系列AI处理器的Physical ID。 device_type 昇腾系列AI处理器类型。 gpu_uuid 节点上GPU的UUID。 gpu_index 节点上GPU的索引。 gpu_type 节点上GPU的型号。 device_name i
"param/learning_rate" : 0.05512301741232006 }, "0.0625", "tensor(0.0754, device='cuda:0', requires_grad=True)", "ae544174", "2", "0.0625" ], [ "True"
e-Instruct" 2)若量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
-Instruct" 2)如果量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
DockerFile构建镜像(可选) 本章节主要介绍通过DockerFile文件构建训练镜像,将训练过程中依赖包封装使用,过程中需要连接互联网git clone,请确保环境可以访问公网,详解操作如下: 进入代码包Dockerfile文件同级目录: cd /home/ma-user
DockerFile构建镜像(可选) 本章节主要介绍通过DockerFile文件构建训练镜像,将训练过程中依赖包封装使用,过程中需要连接互联网git clone,请确保环境可以访问公网,详解操作如下: 进入代码包Dockerfile文件同级目录: cd /home/ma-user
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
server_index = index if server["device"]: device_count = len(server["device"]) # RANK_TABLE_FILE文件中,节点总数量为0,表示未获取到节点
server_index = index if server["device"]: device_count = len(server["device"]) # RANK_TABLE_FILE文件中,节点总数量为0,表示未获取到节点
space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device” OOM导致训练作业失败 常见的磁盘空间不足的问题和解决办法 父主题: 训练作业
network = torch.nn.parallel.DistributedDataParallel(network, device_ids=device_ids, find_unused _parameters=True) File "/home/work/anaconda/lib/python3
将废弃)。 device_id 昇腾系列AI处理器的Physical ID。 device_type 昇腾系列AI处理器类型。 gpu_uuid 节点上GPU的UUID。 gpu_index 节点上GPU的索引。 gpu_type 节点上GPU的型号。 device_name i
必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可
cudaCheckError() failed : no kernel image is available for execution on the device 原因分析 因为编译的时候需要设置setup.py中编译的参数arch和code和电脑的显卡匹配。 解决方法 对于GP Vnt1的显卡,GPU算力为-gencode
部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。