检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
全参微调:直接在模型上训练,影响模型全量参数的微调训练,效果较好,收敛速度较慢,训练时间较长。 LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 增量预训练:在现有预训练模型基础上,利用新数据或特定领域的数据增强模
ch如果开了sync-batch-norm,多机会慢,因开了sync-batch-norm以后,每一个iter里面每个batch-norm层都要做同步,通信量很大,而且要所有节点同步。 解决方案2 关掉sync-batch-norm,或者升pytorch版本,升级pytorch到1
年9月15日期间的样本。 score 否 String 根据置信度筛选。 slice_thickness 否 String DICOM层厚,通过层厚筛选样本。 study_date 否 String DICOM扫描时间。 time_in_video 否 String 视频中某个时间。
ModelArts imageNet 1.0:目录方式,只支持单标签 相同标签的图片放在一个目录里,并且目录名字即为标签名。当存在多层目录时,则以最后一层目录为标签名。 示例如下所示,其中Cat和Dog分别为标签名。 dataset-import-example ├─Cat │ 10
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表6
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表8
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 如果训练数据和代码经常变动,则不建议把数据、代码放到容器镜像里,避免频繁地构建容器镜像。
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 如果训练数据和代码经常变动,则不建议把数据、代码放到容器镜像里,避免频繁地构建容器镜像。