检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
配置Lite Server网络 Server创建后,需要进行网络配置,才可使其与Internet通信,本章节介绍网络配置步骤。网络配置主要分为以下两个场景: 单个弹性公网IP用于单个Server服务器:为单台Server服务器绑定一个弹性公网IP,该Server服务器独享网络资源。
String 资源约束,可选值如下: 资源类型(flavor_type),对应值可选择CPU、GPU或Ascend; 是否支持多卡训练(device_distributed_mode),对应值可选择支持(multiple)、不支持(singular); 是否支持分布式训练(host
时,通过引入少量可训练参数来调整模型以适应特定任务。 全参训练(Full):这种策略主要对整个模型进行微调。这意味着在任务过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制
1。 在ModelArts官方提供的基础镜像上,构建一个用于ModelArts Standard推理部署的镜像。 在模型软件包和依赖包的同层目录下,创建并编辑Dockerfile。 vim Dockerfile Dockerfile内容如下: FROM swr.cn-southwest-2
config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = '0' with tf.Session(graph=tf.Graph(), config=config) as
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
当前该策略仅支持qwen1.5-7B指令监督式微调。 全参训练(Full):这种策略主要对整个模型进行微调。这意味着在任务过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制
当前该策略仅支持qwen1.5-7B指令监督式微调。 全参训练(Full):这种策略主要对整个模型进行微调。这意味着在任务过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制
当前该策略仅支持qwen1.5-7B指令监督式微调。 全参训练(Full):这种策略主要对整个模型进行微调。这意味着在任务过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表12
全参微调:直接在模型上训练,影响模型全量参数的微调训练,效果较好,收敛速度较慢,训练时间较长。 LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 增量预训练:在现有预训练模型基础上,利用新数据或特定领域的数据增强模
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表11
配置Lite Server存储 Server服务器支持SFS、OBS、EVS三种云存储服务,提供了多种场景下的存储解决方案,主要区别如下表所示。若需要对本地盘进行配置,请参考物理机环境配置。 表1 表1 SFS、OBS、EVS服务对比 对比维度 弹性文件服务SFS 对象存储服务OBS
ok实例后,确认不使用EVS就及时删除数据,释放资源,避免产生费用。 Notebook中保存的镜像大小不超过35G,镜像层数不能超过125层。否则镜像会保存失败。 Standard训练作业 训练日志仅保留30天,超过30天会被清理。如果用户需要永久保存日志,请在创建训练作业时,打
is_bf16_supported() SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7 修改为 SUPPORT_BF16 = SUPPORT_CUDA and True SUPPORT_FP16
准备镜像 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像 swr
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 不建议把数据、代码放到容器镜像里。因为对应内容应该是经常变动的,会导致频繁的容器镜像构建操作。