检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
间分辨率。 部署模型 在“从资产选模型”选择所需模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 边缘部署:算法部署至客户的边缘设备中。 作业输入方式 选择 “OBS”表示从OBS中读取数据。 作业输出方式 选择 “OBS”表示将输出结果存储在OBS中。 作业配置参数
v风、2米温度、海平面气压),13高空层次(1000、925、850、700、600、500、400、300、250、200、150、100、50hPa)的5个高空层特征(重力位势、u风、v风、比湿、温度)。 25km*25km。 全球范围,纬度90N~-90S,经度0W~360E。 训练集和验证集均推荐使用>1个月的历史数据。
预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率以及区域范围,以适配自定义区域的模型场景。此阶段需预先准备区域的高精度数据。 微调阶段:在预训练模型的基础上,微调利
训练相关概念说明 概念名 说明 温度系数 温度系数(temperature)控制生成语言模型中生成文本的随机性和创造性,调整模型的softmax输出层中预测词的概率。其值越大,则预测词的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化。 多样性与一致性 多样性和一致性是评估LLM生成语言的两个重要方面。
v风、2米温度、海平面气压),13高空层次(1000、925、850、700、600、500、400、300、250、200、150、100、50hPa)的5个高空层特征(重力位势、u风、v风、比湿、温度),分辨率为25km*25km的网格数据。 集合预报 用于选择是否开启集合预报。 在气象预报中,集合预
T:15层:海温(℃) S:15层:海盐(PSU) U:15层:海流经向速率 (ms-1) V:15层:海流纬向速率 (ms-1) 海表变量 海表变量用于描述海洋表层和其上方大气的状态的关键物理量。它们主要用于模拟和分析海洋表面的风速、温度、和气压等特征。 U10:1层:海表面10m经向风速(ms-1)
打造政务智能问答助手 场景介绍 大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SF
surface_features:海表特征变量列表,例如海表高度(SSH)、温度(T)、风速(U、V)。 under_sea_layers:深海层列表,例如500m、400mPa等。 under_sea_features:高空特征变量列表,例如海盐(S)、温度(T)、海流速率(U、V)。
全部参数进行更新。这种方法通常会带来最优的模型性能,但需要大量的计算资源和时间,计算开销较高。 LoRA微调:在模型微调过程中,只对特定的层或模块的参数进行更新,而其余参数保持冻结状态。这种方法可以显著减少计算资源和时间消耗,同时在很多情况下,依然能够保持较好的模型性能。 基础模型
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型
打造短视频营销文案创作助手 场景介绍 随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供
T;800:?abc”。 可选择的要素参考表8中,提供的全球海洋要素模型的深海变量和海表变量。 表8 中期海洋智能预测模型信息 模型 深海层深 预报深海变量 预报海表变量 时间分辨率 水平分辨率 区域范围 全球海洋要素模型 0m, 6m, 10m, 20m, 30m, 50m, 70m
全球中期天气要素预测模型、降水模型信息表 模型 预报层次 预报高空变量 预报表面变量 降水 时间分辨率 水平分辨率 区域范围 全球中期天气要素预测模型 13层(1000hpa, 925hpa, 850hpa, 700hpa, 600hpa, 500hpa, 400hpa, 300hpa, 250hpa