检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
auth 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 main_service_id 否 String 在线服务ID。 content_id
在左上角选择区域,区域需与授权配置中的区域相同。 在ModelArts左侧菜单栏中,选择“开发环境>Notebook”,界面未提示权限不足,表明ModelArts的使用权限和委托授权配置成功。 如果提示“需获取依赖服务的授权”,说明未配置ModelArts委托访问授权,请参考Step3 为用户配置ModelArt
AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
实例正常,有的实例异常。正常的实例会产生费用,此时服务状态是concerning。 failed:失败,服务部署失败,失败原因可以查看事件和日志标签。 stopped:停止。 finished:只有批量服务会有这个状态,表示运行完成。 sort_by 否 String 指定排序字
什么是边缘节点? 边缘节点是您自己的边缘计算设备,用于运行边缘应用,处理您的数据,并安全、便捷地和云端应用进行协同。 父主题: 边缘服务
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT
量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT
erty 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 service_id 是 String 服务ID。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token
ModelArts推理平台不支持的AI引擎,推荐使用自定义镜像方式。 请参考创建模型的自定义镜像规范和从0-1制作自定义镜像并创建模型,制作自定义镜像。 推荐在开发环境Notebook中调试模型包,制作自定义镜像。请参考在开发环境中构建并调试推理镜像和无需构建直接在开发环境中调试并保存镜像用于推理。 更多的自定义脚本代码示例,请参考自定义脚本代码示例。
String 返回的APP列表按何属性排序,可选值包括app_name、created_at、updated_at。默认为name。 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。
AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
er”、“number” 、“raw”和“string”。 表单字段类型为“slider”时,支持输入滑动条的最小值、最大值和步长。 Hide code 隐藏代码区域。 Hide form 隐藏表单区域。 Show all 同时展示code和form区域。 图19 “dropdo
量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT
支持按照检索参数查询服务列表,返回满足检索条件的服务list,检索参数如表1所示。 在查询列表时,返回list的同时,默认会打印模型列表的详细信息,如表2和表3所示。 表1 查询检索参数说明 参数 是否必选 参数类型 描述 session 是 Object 会话对象,初始化方法见Session鉴权。
AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化 可以在Hu
475a-b5d0-ecf896da3b0d"的"/path1"和"/path2/path2-1"配置访问权限,同时也为"2a70da1e-ea87-4ee4-ae1e-55df846e7f41"的"/path1"和"/path2/path2-1"配置访问权限。 "modelarts:sfsId":
上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery CLI配置工具指南。 文件合集大小不超过50GB。 文件上传完成前,请不要刷新或关闭上传页面,防止意外终止上传任务,导致数据缺失。 如果上传的文件名称和已有文件重名,系统会自动用新文件内容覆盖已有文件内容。