检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片,且数据集中每个标签要有大于5个样本。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
BMP。 图片最大边不大于4096px,最小边不小于100px,且大小不超过4M。 训练分类器的数据集要求将图片放在一个目录里,并压缩成zip文件,文件大小不应大于10M。 自然语言处理套件 自然语言处理套件使用开发应用时,需要上传文本数据用于模型训练。 数据集要求如表2所示。 表2
用于训练多模板分类器的训练集,需要把各个模板的训练图片打包成一个文件夹并压缩成“zip”包,“zip”包文件大小不超过10M。 例如训练“保险单”模板的训练集,需要把同模板的保险单图片打包成一个文件夹并压缩成“zip”包。 步骤2:新建应用 登录ModelArts Pro控制台,单击“文字识别”套件卡片的“进入套件”。
保证图片质量:不能有损坏的图片。 目前支持的格式包括JPG、JPEG、PNG、BMP。 训练数据集 本样例训练数据集使用未标注数据。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有商品分类的图片,即覆盖所有标签的图片。 每个分类标签需要准备20个数据以上,
保证图片质量,不能有损坏的图片。目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个
BMP。 图片最大边不大于4096px,最小边不小于100px,且大小不超过4M。 训练分类器的数据集要求将图片放在一个目录里,并压缩成zip文件,文件大小不应大于10M。 进入应用开发页面 登录“ModelArts Pro>文字识别套件”控制台。 默认进入“应用开发>工作台”页面。
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签需
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有材质类型的待定级图片。 为保证训练效果,需要准备至少20张待训练的图片数据,
园区场景下,实现车牌识别、安全帽检测等功能。 智慧家庭 家庭检测、家居智能化场景下,实现手势识别、哭声检测等功能。 智慧商超 商店和超市场景下,实现VIP识别、客流量统计等功能。 用户群体 ModelArts Pro用户群体主要是各大政企,一般具有如下特点。 了解行业解决方案,懂得行业知识。
自然语言处理套件(使用文本分类工作流开发应用) ModelArts Pro的自然语言处理套件提供了通用文本分类工作流和多语种文本分类工作流,通过工作流指引支持自主上传文本数据,构建高精度文本分类预测模型,适配不同行业场景的业务数据,快速获得定制服务。 通用文本分类工作流仅支持中文
HiLens套件(使用HiLens安全帽检测技能开发可训练技能) ModelArts Pro的HiLens套件提供了安全帽检测技能,通过工作流指引支持自主上传数据集,零代码构建安全帽检测技能,并一键下发到端侧设备HiLens Kit;针对难例数据,可快速迭代更新技能,提升精度。
使用单模板工作流开发应用 ModelArts Pro的文字识别套件提供了通用单模板工作流,通过工作流指引可构建文字识别模板,识别单个板式图片中的文字,快速实现文档、票证等场景的文字识别。 本章节提供一个身份证样例,帮助您快速熟悉使用文字识别套件中的通用单模板工作流开发应用的过程。
”,以及合并标签后新的“标签名”。 图3 合并标签 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图4 标签解析 后续操作 在“数据选择”页面选择训练数据集,并针对未标注的数
右上角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 选择训练数据集后,单击右下角的“下一步”,进入应用开
自动标注数据 单击“下一步”,创建SKU后,自动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 在“数据选择”页面选择训练数据集,针对未标注的数据进
评估应用 训练模板分类模型后,需要对模板分类器和模板图片进行评估和考察。您可以通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”