检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Flink应用开发简介 简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pi
(可选)创建MapReduce样例工程 准备安全认证 如果您使用的是安全集群,需要进行安全认证。 配置MapReduce应用安全认证 根据场景开发工程 提供了样例工程。 帮助用户快速了解MapReduce各部件的编程接口。 开发MapReduce应用 编译并运行程序 指导用户将开发好的程序编译并提交运行。 调测MapReduce应用
帮助用户快速了解MapReduce各部件的编程接口。 MapReduce统计样例程序开发思路 MapReduce访问多组件样例程序开发思路 编译并运行程序 指导用户将开发好的程序编译并提交运行。 编译并运行MapReduce应用 查看程序运行结果 程序运行结果会写在用户指定的路径下。用户还可以通过UI查看应用运行情况。
ClickHouse作为一款独立的DBMS系统,使用SQL语言就可以进行常见的操作。开发程序示例中,全部通过clickhouse-jdbc API接口来进行描述,开发流程主要分为以下几部分: 设置属性:设置连接ClickHouse服务实例的参数属性。 建立连接:建立和ClickHouse服务实例的连接。
} else { fmt.Println(err) } } 更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 200 修改集群名称成功 400 修改集群名称失败 错误码
} else { fmt.Println(err) } } 更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 202 获取SQL结果成功 400 收集SQL作业结果失败
OpenTSDB是一个基于HBase的分布式、可伸缩的时间序列数据库。OpenTSDB的设计目标是用来采集大规模集群中的监控类信息,并可实现数据的秒级查询,解决海量监控类数据在普通数据库中查询存储的局限性。 OpenTSDB由时间序列守护进程(TSD)和一组命令行实用程序组成。与OpenTSDB的交互主要通
本章节主要介绍ClickHouse创建表的SQL基本语法和使用说明。 基本语法 方法一:在指定的“database_name”数据库中创建一个名为“table_name ”的表。 如果建表语句中没有包含“database_name”,则默认使用客户端登录时选择的数据库作为数据库名称。 CREATE
} else { fmt.Println(err) } } 更多编程语言的SDK代码示例,请参见API Explorer的代码示例页签,可生成自动对应的SDK代码示例。 状态码 状态码 描述 200 取消SQL执行任务成功 400 取消SQL执行任务失败
提供集群状态的监控功能,您能快速掌握服务及主机的健康状态。 提供图形化的指标监控及定制,您能及时的获取系统的关键信息。 提供服务属性的配置功能,满足您实际业务的性能需求。 提供集群、服务、角色实例的操作功能,满足您一键启停等操作需求。 MRS Manager简介 EIP方式访问集群 通过EIP访问快速便捷的访问Manager,及开源组件Web站点。
支持数据Insert和Update ClickHouse的应用场景: 实时数仓场景 使用流式计算引擎(如Flink)把实时数据写入ClickHouse,借助ClickHouse的优异查询性能,在亚秒级内响应多维度、多模式的实时查询分析请求。 离线查询场景 把规模庞大的业务数据导入到ClickHouse
Flink应用开发简介 组件介绍 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pi
悉且统一的平台。作为查询大数据的工具补充,Impala不会替代基于MapReduce构建的批处理框架,例如Hive。基于MapReduce构建的Hive和其他框架最适合长时间运行的批处理作业。 Impala主要特点如下: 支持Hive查询语言(HiveQL)中大多数的SQL-92功能,包括
支持数据Insert和Update ClickHouse的应用场景: 实时数仓场景 使用流式计算引擎(如Flink)把实时数据写入ClickHouse,借助ClickHouse的优异查询性能,在亚秒级内响应多维度、多模式的实时查询分析请求。 离线查询场景 把规模庞大的业务数据导入到ClickHouse
API对HBase进行应用开发。 开发流程中各阶段的说明如图1和表1所示。 图1 HBase应用程序开发流程 表1 HBase应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。
准备开发和运行环境 Storm的应用程序当前推荐使用Java语言进行开发。可使用IntelliJ IDEA工具。 Storm的运行环境即Storm客户端,请根据指导完成客户端的安装和配置。 准备Storm应用开发和运行环境 准备工程 Storm提供了不同场景下的样例程序,您可以导入样例工程进行程序学习。
Hive应用开发流程 开发流程中各阶段的说明如图1和表1所示。 图1 Hive应用程序开发流程 表1 Hive应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ IDEA工具,同时完成JDK、Maven等初始配置。
定义Column的数量和类型。HBase中表的列非常稀疏,不同行的列的个数和类型都可以不同。此外,每个CF都有独立的生存周期(TTL)。可以只对行上锁,对行的操作始终是原始的。 Column 与传统的数据库类似,HBase的表中也有列的概念,列用于表示相同类型的数据。 RegionServer数据存储
悉且统一的平台。作为查询大数据的工具补充,Impala不会替代基于MapReduce构建的批处理框架,例如Hive。基于MapReduce构建的Hive和其他框架最适合长时间运行的批处理作业。 Impala主要特点如下: 支持Hive查询语言(HiveQL)中大多数的SQL-92
悉且统一的平台。作为查询大数据的工具补充,Impala不会替代基于MapReduce构建的批处理框架,例如Hive。基于MapReduce构建的Hive和其他框架最适合长时间运行的批处理作业。 Impala主要特点如下: 支持Hive查询语言(HiveQL)中大多数的SQL-92功能,包括