检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过Function Calling扩展大语言模型对外部环境的理解 本示例将展示如何定义一个获取送货日期的函数,并通过LLM来调用外部API来获取外部信息。 操作步骤 设置Maas的api key和模型服务地址。 import requests from openai import
LLM大语言模型训练推理 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911) 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911) 主流开源大模型基于Lite
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
通过Function Calling扩展大语言模型交互能力 Function Calling介绍 在Dify中配置支持Function Calling的模型使用 通过Function Calling扩展大语言模型对外部环境的理解
本地导入的算法有哪些格式要求? ModelArts支持导入本地开发的算法,格式要求如下: 编程语言不限。 启动文件必须选择以“.py”结尾的文件。 文件数(含文件、文件夹数量)不超过1024个。 文件总大小不超过5GB。 父主题: 功能咨询
推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
Function Calling介绍 使用场景 大语言模型的Function Calling能力允许模型调用外部函数或服务,以扩展其自身的能力,执行它本身无法完成的任务。以下是一些Function Calling的使用场景: 表1 Function Calling使用场景说明 使用场景
场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 开启训练故障自动重启功能 查看日志和性能 训练脚本说明 父主题: LLM大语言模型训练推理
场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
Calling的模型使用 Dify是一个能力丰富的开源AI应用开发平台,为大型语言模型(LLM)应用的开发而设计。它巧妙地结合了后端即服务(Backend as Service)和LLMOps的理念,提供了一套易用的界面和API,加速了开发者构建可扩展的生成式AI应用的过程。 操作步骤
Standard数据管理 ModelArts Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts Standa
推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:Standard大模型推理常见问题 父主题: LLM大语言模型训练推理
推理性能测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理standard常见问题 父主题: LLM大语言模型训练推理
准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 父主题: LLM大语言模型训练推理
推理模型量化 eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据