检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
也可以设置其他统计维度和周期,详细介绍请参见流水与明细账单。 核对资源用量是否与实际相符 假设用户在2023/07/10 16:37:15购买了一块按需计费专属资源池(CPU: 8 核 32GB),并在2023/07/10 19:09:06时刻将其删除。 专属资源池流水账单 按需
由于用户需要付费购买备用节点作为高可用冗余节点,因此资源成本会提高。 如何设置高可用节点:当前支持从资源池角度批量设置多个高可用冗余节点,也支持设置单个节点为高可用冗余节点。 资源池批量设置多个高可用冗余节点 方式一:在购买时设置(仅Snt9C支持) 图1 购买时设置 参数说明:
项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。 使用BertBase算法对用户在app上购买商品后的评论进行理解。 - CPU架构 X86/ARM,自有软件是否支持ARM。 例如:4个推理模型在ARM上运行,6个推理模型在X86上运行。
ModelArts自动学习与ModelArts PRO的区别 ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造
图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行,需要购买ModelArts专属资源池。 准备权重 准备对应模型的权重文件。 准备代码 准备AscendCloud-6.3.906-xxx.zip。
AI专属资源池 > 弹性节点Server”,进入“节点”列表页面。 鼠标移动至节点名称上,复制需要退订的实例ID。 图3 复制实例ID Server购买订单里绑定的资源ID为Server ID,与Server产品所封装的BMS/ECS ID不同,若要退订Server,需要在ModelArts控制台的“资源管理
aarch64架构的主机,操作系统使用ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。
欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。
-job-test-v2/pytorch/fast_example/code/cpu”目录下。 已经准备好训练作业的数据文件,例如将训练数据集存放在OBS的“obs://cnnorth4-job-test-v2/pytorch/fast_example/data”目录下。 已经创
图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行,需要购买ModelArts专属资源池。 准备权重 准备对应模型的权重文件。 准备代码 准备AscendCloud-6.3.907-xxx.zip。
myhuaweicloud.com/atelier/notebook2.0-mlstudio-cp37:5.0.1-mls-20230118153946", "tag": "5.0.1-mls-20230118153946", "tags": [], "type": "BUILD_IN"
产品ID,仅当集群为包周期类型时返回。 allocatable_gpus Float 可使用的GPU核数。 order_id String 购买产品的订单ID,仅当集群为包周期类型时返回。 period_type String 订购周期类型,取值year或month,仅当集群为包周期类型时返回。
图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行,需要购买ModelArts专属资源池。 准备权重 准备对应模型的权重文件。 准备代码 准备AscendCloud-6.3.908-xxx.zip。
AI Gallery功能介绍 面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习大模型。 构建零
查询模型详情 查询当前模型对象的信息。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据导入模型生成的模型对象进行模型详情查询 1 2 3 4 5 6 7 from modelarts
Standard支持的AI框架 ModelArts Standard的开发环境Notebook、训练作业、模型推理(即AI应用管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore
可用区。 charging_info 否 ChargingInfo object 服务器计费模式信息。 count 否 Integer 单次购买的服务器数量。 enterprise_project_id 否 String 企业ID。 flavor 是 String 服务器规格名称。
图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备资源 本教程案例是基于ModelArts Standard运行,需要购买ModelArts专属资源池。 准备权重 准备对应模型的权重文件。 准备代码 准备AscendCloud-6.3.909-xxx.zip。
ModelArts入门指引 本文旨在帮助您了解ModelArts的基本使用流程以及相关的常见问题,帮助您快速上手ModelArts服务。 面向不同AI基础的开发者,本文档提供了相应的入门教程,帮助用户更快速地了解ModelArts的功能,您可以根据经验选择相应的教程。 面向AI开
Sequential() from keras.layers import Dense import tensorflow as tf # 导入训练数据集 mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) =