检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae
更新训练作业描述 功能介绍 更新训练作业的描述。 URI PUT /v1/{project_id}/training-jobs/{job_id} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh
node_count Integer 训练作业选择的资源副本数。 pool_id String 训练作业选择的资源池ID。 flavor_detail FlavorDetail object 训练作业、算法的规格信息(该字段只有公共资源池存在)。 表45 FlavorDetail 参数 参数类型 描述
model_precision String 模型精度描述。 model_size Long 模型大小,单位为字节(Byte)。 model_train_dataset String 模型训练数据集。 model_dataset_format String 使用模型需要的数据集格式。 model_description_url
训练作业失败,如何使用开发环境调试训练代码? 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VsCode)联接云上环境调试请参考使用本地IDE开发模型。
job_name:可选参数,训练任务名,便于区分和记忆。 本地单机调试训练任务开始后,SDK会依次帮助用户完成以下流程: 初始化训练作业,如果2指定的训练数据在OBS上,这里会将数据下载到local_path中。 执行训练任务,用户的训练代码需要将训练输出保存在4中指定的local_path中。
调用查询训练作业详情接口使用刚创建的训练作业返回的id查询训练作业状态。 调用查询训练作业指定任务的日志(OBS链接)接口获取训练作业日志的对应的obs路径。 调用查询训练作业指定任务的运行指标接口查看训练作业的运行指标详情。 当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件 已获
创建训练作业版本 功能介绍 创建一个训练作业版本。 该接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI POST /v1/{project_id}/training-jobs/{job_id}/versions 参数说明如表1所示。 表1 参数说明
像可以快速搭建昇腾开发环境。 开通裸金属服务器资源请参见DevServer资源开通,在裸金属服务器上搭建迁移环境请参见裸金属服务器环境配置指导,使用ModelArts提供的基础容器镜像请参见容器环境搭建。 训练代码迁移 前提条件 要迁移的训练任务代码在GPU上多次训练稳定可收敛。
单击“提交”,在“信息确认”页面,确认训练作业的参数信息,确认无误后单击“确定”。 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。 训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如下所示。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 在Notebook中修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 name 否 String 镜像名
在ModelArts训练时如何安装C++的依赖库? 在训练作业的过程中,会使用到第三方库。以C++为例,请参考如下操作步骤进行安装: 将源码下载至本地并上传到OBS。使用OBS客户端上传文件的操作请参见上传文件。 将上传到OBS的源码使用Moxing复制到开发环境Notebook中。
OOM导致训练作业失败 问题现象 因为OOM导致的训练作业失败,会有如下几种现象。 错误码返回137,如下图所示。 Modelarts Service Log Trainina end with return code: 137 Modelarts Service Log]handle
int信息初始化训练状态即可。用户需要在代码里加上reload ckpt的代码,使能读取前一次训练保存的预训练模型。 在ModelArts训练中实现增量训练,建议使用“训练输出”功能。 在创建训练作业时,设置训练“输出”参数为“train_url”,在指定的训练输出的数据存储位置
训练作业的监控内存指标持续升高直至作业失败 问题现象 训练作业的“状态”为“运行失败”。 原因分析 训练作业的监控内存指标持续升高,导致最后训练作业失败。 处理步骤 查询训练作业的日志和监控信息,是否存在明确的OOM报错信息。 是,训练作业的日志里存在OOM报错,执行2。 否,训
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。