检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/work/llm_train/processed_for_input/llama2-13b/data/pretrain/
频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_train/processed_for_input/llama2-13b/data/pretrain/
String 工作流来源,可选值为ai_gallery,表示工作流是从AI Gallery导入的。 storages Array of WorkflowStorage objects Workflow包含的统一存储定义。 labels Array of strings 为Workflow工作流设置的标签。
入门案例:快速创建一个物体检测的数据集 本节以准备训练物体检测模型的数据为例,介绍如何针对样例数据,进行数据分析、数据标注等操作,完成数据准备工作。在实际业务开发过程中,可以根据业务需求选择数据管理的一种或多种功能完成数据准备。此次操作分为以下流程: 准备工作 创建数据集 数据分析
DataConsumptionSelector:用于在多个依赖节点的输出中选择一个有效输出作为数据输入,常用于存在条件分支的场景中(在构建工作流时未能确定数据输入来源为哪个依赖节点的输出,需根据依赖节点的实际执行情况进行自动选择) 表4 Dataset 属性 描述 是否必填 数据类型 dataset_name
erCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。
erCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。
erCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_train/processed_for_input/llama2-13b/data/pretrain/
erCase','BertWordPieceCase','GPT2BPETokenizer','PretrainedFromHF'],一般为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。
频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_train/processed_for_input/llama2-13b/data/pretrain/
频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/ws/llm_train/processed_for_input/llama2-13b/data/pretrain/
物体检测标签专用内置属性:形状特征,类型为List。以图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。每种形状的格式如下: bndbox [[0,10],[50,95]] 两个点组成,矩形的左上角为第一个点,矩形的右下角为第二个点(即第
=(不等于)、>(大于)、>=(大于等于)、<(小于)、<=(小于等于)、in(包含)、or(或)。 left Object 节点执行条件为true时的分支。 right Object 节点执行条件为false时的分支。 表11 WorkflowSubgraph 参数 参数类型 描述 name String 子图名称。
8*Ascend lora/dpo gradient_accumulation_steps: 8 ZeRO-3 1*节点 & 4*Ascend 以上参数为未开启NPU FlashAttention融合算子,上述参数值仅供参考,请根据自己实际要求合理配置其他加速框架或ZeRO (Zero Redundancy
格资源。 图2 选择实例规格 实例规格切换需要该规格所在的集群有其他规格才可以执行,当前上线的部分规格所在集群无其他规格,切换的时候会显示为空,所以不可进行切换,如北京四、上海一的GPU: 1*Tnt004(16GB)|CPU: 8核 32GB规格。 修改Notebook SSH远程连接配置
其中,加粗的斜体字段需要根据实际值填写: iam_endpoint为IAM的终端节点。 user_name为IAM用户名。 user_password为用户登录密码。 domain_name为用户所属的帐号名。 cn-north-1为项目名,代表服务的部署区域。 返回状态码“201 Cre
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。