检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
String APP的编号,可通过查询APP列表获取。 auth_id String 授权编号,授权失败时为空。 reason String 授权或者取消授权失败原因,授权成功时为空。 success Boolean 授权或者取消授权是否成功。 状态码:401 表8 响应Header参数
Query参数 参数 是否必选 参数类型 描述 offset 否 Integer 查询算法的偏移量,最小为0。例如设置为1,则表示从第二条开始查。 limit 否 Integer 查询算法的限制量。最小为1,最大为50。 sort_by 否 String 查询算法排列顺序的指标。默认使用create_time排序。
String APP的编号,可通过查询APP列表获取。 auth_id String 授权编号,授权失败时为空。 reason String 授权或者取消授权失败原因,授权成功时为空。 success Boolean 授权或者取消授权是否成功。 状态码:401 表8 响应Header参数
怎么精细地使用提示词来指导模型,也无法描述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet适配到昇腾卡进行训练,可以提高能效、支持更大模型和多样化部署环境,提升昇腾云在图像生成和编辑场景下的竞争力。
AI Gallery简介 AI Gallery算法、镜像、模型、Workflow等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。
据校验。默认值为True。 LightContrast 亮度对比度增强,使用一定的非线性函数改变亮度空间的亮度值。 func:默认值为gamma gamma为常见方法伽马矫正,公式为255*((v/255)**gamma)') sigmoid为函数为S型曲线,公式为255*1/(
作业优先级取值为1~3,默认优先级为1,最高优先级为3。默认用户权限可选择优先级1和2,配置了“设置作业为高优先级权限”的用户可选择优先级1~3。 如何设置训练作业优先级 在创建训练作业页面可以设置训练的“作业优先级”。取值为1~3,默认优先级为1,最高优先级为3。 如何修改训练作业优先级
务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务
到满意的模型后,可以将训练后得到的模型创建为模型,用于部署服务。 从OBS中导入模型文件创建模型:如果您使用常用框架在本地完成模型开发和训练,可以将本地的模型按照模型包规范上传至OBS桶中,从OBS将模型导入至ModelArts中,创建为模型,直接用于部署服务。 从容器镜像中导入
随机种子数。每次数据采样时,保持一致。 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b
随机种子数。每次数据采样时,保持一致。 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b
随机种子数。每次数据采样时,保持一致。 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b
随机种子数。每次数据采样时,保持一致。 不同模型推荐的训练参数和计算规格要求如表2所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表2 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b
务部署在Notebook中,该参数为Notebook中权重路径;如果服务部署在生产环境中,该参数为本地模型权重路径。 --served-model-name:仅在以openai接口启动服务时需要该参数。如果服务部署在Notebook中,该参数为Notebook中权重路径;如果服务
使用SDK调测多机分布式训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改7和11中的 framework_type参数值即可,例如:MindSpore框架,此处framew
更短的decode平均时间:以qwen2-72b作为LLM大模型、qwen2-0.5b作为小模型为例,小模型推理一次的时间不足大模型的1/5,加上校验后,执行一次完整投机流程的时间也仅为大模型的1.5倍左右(投机步数设置为3步)。而这一次投机流程,平均可以生成3个有效token,即用1.5倍的时间代
使用基础镜像 通过ECS获取和上传基础镜像将镜像上传至SWR服务后,可创建训练作业,在“选择镜像”中选择SWR中基础镜像。 由于基础镜像内需要安装固定版本依赖包,如果直接使用基础镜像进行训练,每次创建训练作业时,训练作业的图1中都需要执行install.sh文件,来安装依赖以及下载完整代码。命令如下:
parser.parse_known_args() args = parser.parse_known_args() # train_url 将被赋值为"/home/ma-user/modelarts/outputs/train_url_0" train_url = args.train_url
打开JupyterLab的git插件 在Notebook列表中,选择一个实例,单击右侧的打开进入“JupyterLab”页面。 图1所示图标,为JupyterLab的Git插件。 图1 Git插件 克隆GitHub的开源代码仓库 GitHub开源仓库地址:https://github
source_type String 模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/S