检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
er”键完成此标签的添加。标注完成后,左侧图片目录中此图片的状态将显示为“已标注”。 数据标注的更多说明: 您可以在图片上方或下方单击左右切换键,或者按键盘的左右方向键,选择其他图片,重复上述操作继续进行图片标注。如果一张图片有多个物体,您可以标注多处。 同一个物体检测自动学习项
/home/ma-user/ws mkdir -p tokenizers/Llama2-70B 多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec
创建训练作业标签。设置TMS标签的key/value为“111”和“k3”,TMS标签的key/value为"k3"和“v2”。 POST https://endpoint/v2/{project_id }/trainJob/{training_job_id}/tags/create
tistic 参数 参数类型 描述 job_count Integer 当前实验下的训练作业总个数。 请求示例 创建实验。 POST https://{endpoint}/v2/{project_id}/training-experiments { "metadata" :
参数类型 描述 error_code String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 https://{endpoint}/v1/{project_id}/notebooks/a55eba18-1ebf-4e9a-8229-d2d3
参数类型 描述 error_code String ModelArts错误码。 error_msg String 具体错误信息。 请求示例 https://{endpoint}/v1/{project_id}/pools/a55eba18-1ebf-4e9a-8229-d2d3b593a3dc/tags
ata.json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json的下载链接:https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/blob/main/alpacaGPT4/alpaca_gpt4_data
本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 框架 1 Qwen-VL 7b https://huggingface.co/Qwen/Qwen-VL-Chat DeepSpeed 操作流程 图1 操作流程图 表2 操作任务流程说明
Step3 上传代码包和权重文件上传的HuggingFace权重文件存放目录。如果使用了量化功能,则使用推理模型量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。
running_task_type 否 Integer 指定需要检测的正在运行任务(包括初始化)的类型。可选值如下: 0:自动标注 1:预标注 2:导出任务 3:切换版本 4:导出manifest 5:导入manifest 6:发布版本 7:自动分组 请求参数 无 响应参数 状态码: 200 表3 响应Body参数
c_decode/EAGLE 文件夹,使用convert_eagle_ckpt_to_vllm_compatible.py脚本进行权重转换。转换命令为 python convert_eagle_ckpt_to_vllm_compatible.py --base-path 大模型权重地址
验收总分。 unchecked_sample_count Integer 未验收的样本数目。 请求示例 查询团队标注验收任务报告 GET https://{endpoint}/v2/{project_id}/datasets/{dataset_id}/workforce-tasks/
如果训练失败,则会执行sleep命令,此时可通过Cloud Shell登录容器镜像中调试。 在Cloud Shell中调试多节点训练作业时,需要在Cloud Shell中切换work0、work1来实现对不同节点下发启动命令,否则任务会处于等待其他节点的状态。 如何防止Cloud Shell的Session断开
介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 若需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模型基于Standard适配PyTorch
为docker镜像的ID,在宿主机上可通过docker images查询得到。 --shm-size:表示共享内存,用于多进程间通信。由于需要转换较大内存的模型文件,因此大小要求200g及以上。 通过容器名称进入容器中。启动容器时默认用户为ma-user用户。 docker exec
W4A16量化工具 ├──convert_awq_to_npu.py # awq权重转换脚本 ├──quantize.py # 昇腾适配的量化转换脚本 ├──build.sh # 安装量化模块的脚本 ├──llm_evaluation
79K-record的JSON格式的OSCAR数据集。 下载数据集。 wget https://huggingface.co/bigscience/misc-test-data/resolve/main/stas/oscar-1GB.jsonl.xz wget https://s3.amazonaws.com/models
针对每一个数据集版本,您可以通过“存储路径”参数,获得此版本对应的Manifest文件格式的数据集。可用于导入数据或难例筛选操作。 表格数据集暂不支持切换版本。 发布数据集版本 登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理> 数据集”,进入“数据集”管理页面 在数据集列表中
|── finetune # 微调加载的数据 |──converted_weights # HuggingFace格式转换megatron格式后权重文件 |── saved_dir_for_output # 训练输出保存权重,目录结构会自动生成,无需用户创建