检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
到4.42 pip install transformers==4.42 --upgrade 问题5:使用AWQ转换llama3.1系列模型权重出现报错 使用AWQ转换llama3.1系列模型权重出现报错:ValueError: 'rope_scaling' must be a dictionary
训练作业开始运行 训练作业运行成功 训练作业运行失败 训练作业被抢占 系统检测到您的作业疑似卡死,请及时前往作业详情界面查看并处理 训练作业已重启 训练作业已被手动终止 训练作业已被终止(最大运行时长:xh) 训练作业已被手动删除 计费信息同步结束 [worker-0] 训练环境预检中
否,则在高级配置的“plugins”参数下添加“{"name":"cabinet"}”,单击下方的“安装”使Volcano调度器更新配置,完成滚动重启。 修改torch_npu训练启动脚本。 脚本要使用torch.distributed.launch/run命令启动,不能使用mp.spa
到4.42 pip install transformers==4.42 --upgrade 问题5:使用AWQ转换llama3.1系列模型权重出现报错 使用AWQ转换llama3.1系列模型权重出现报错:ValueError: 'rope_scaling' must be a dictionary
杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换。配合ModelArts提供的云化容器资源使用,可以更加快速、高效地进行AI开发与模型实验的迭代等。
open source 原因分析 ChatGLM3-6B或GLM-4-9B调优转换后的模型文件中配置文件与原始文件有差异,导致权重校验失败。 问题影响 ChatGLM3-6B或GLM-4-9B调优转换后的模型无法使用权重校验。 处理方法 ChatGLM3-6B或GLM-4-9B模型调优后,不建议进行权重校验。
集群视图 https://cnnorth4-modelarts-sdk.obs.cn-north-4.myhuaweicloud.com/metrics/grafana/dashboards/ModelArts-Cluster-View.json 节点视图 https://cnnorth4-modelarts-sdk
到4.42 pip install transformers==4.42 --upgrade 问题5:使用AWQ转换llama3.1系列模型权重出现报错 使用AWQ转换llama3.1系列模型权重出现报错:ValueError: 'rope_scaling' must be a dictionary
精度问题处理 设置高精度并重新转换模型 在转换模型时,默认采用的精度模式是fp16,如果转换得到的模型和标杆数据的精度差异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在
python modify_onnx.py ./bert_model.onnx 该转换脚本用于Fill-Mask 任务,若是其他类型任务请按实际场景修改转换脚本。 onnx模型转mindir格式,执行如下命令,转换完成后会生成bert_model.mindir文件。 converter_lite
ry-num": "3"(故障自动重启次数)。 "fault-tolerance/job-unconditional-retry": "true"(无条件重启) "fault-tolerance/hang-retry": "true"(卡死重启) "jupyter-lab/enable":
步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share
ry-num": "3"(故障自动重启次数)。 "fault-tolerance/job-unconditional-retry": "true"(无条件重启) "fault-tolerance/hang-retry": "true"(卡死重启) "jupyter-lab/enable":
&& \ pip install ipykernel==6.7.0 --trusted-host https://repo.huaweicloud.com -i https://repo.huaweicloud.com/repository/pypi/simple && \
bash build.sh 步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的如下格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 { "prefix": "AAA"
bash build.sh 步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的如下格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 { "prefix": "AAA"
bash build.sh 步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的如下格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 { "prefix": "AAA"
gpg && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sed 's#deb https://#deb [signed-by=
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
步骤二:非sharegpt格式数据集转换(可选) 如果数据集json文件不是sharegpt格式,而是常见的 { "prefix": "AAA" "input": "BBB", "output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share