检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
已经创建好训练作业的日志输出位置,例如“obs://cnnorth4-job-test-v2/pytorch/fast_example/log”。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST https://{iam_endpoint}/v3/auth/tokens
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,切换一个c
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-3rdLLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,执行如下命令安装性能测试的关依赖。
型将从一个全新的初始状态开始训练则不加载权重。【true or false】,默认false do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096
已完成训练的模型包,及其对应的推理代码和配置文件,且已上传至OBS目录中。 确保您使用的OBS与ModelArts在同一区域。 创建模型操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“模型管理”,进入模型列表页面。 单击左上角的“创建模型”,进入“创建模型”页面。 在“创建模型”页面,填写相关参数。
此构建出一个新镜像在Notebook创建实例并使用。关于Dockerfile的具体编写方法,请参考官网。 查询基础镜像(第三方镜像可跳过此步骤) ModelArts提供的公共镜像,请参考Notebook专属预置镜像列表,根据预置镜像的引擎类型在对应的章节查看镜像URL。 连接容器镜像服务。
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,切换一个conda环境。
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以llama2-13b预训练为例:
volcano job形式下发lite池集群。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr
开发用于自定义镜像训练的代码 当ModelArts Standard提供的预置框架不满足您的诉求时,ModelArts Standard支持用户构建自定义镜像用于模型训练。 自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置框架无法满足需求,否则不推荐使用
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 若用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b
Turbo存储加速的具体方案请查看: 面向AI场景使用OBS+SFS Turbo的存储加速实践。 设置训练存储加速 当完成上传数据至OBS并预热到SFS Turbo中步骤后,在ModelArts Standard中创建训练作业时,设置训练“SFS Turbo”,在“文件系统”中选择SFS Turbo实例名称
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
"工具描述(选填)" } ] 上传数据到指定目录 将下载的原始数据存放在/mnt/sfs_turbo/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data
根据异常状态的错误提示修改源数据后,单击目标数据集右侧的“重试”重新发布数据集。 删除发布的数据集 当您需要删除发布在AI Gallery中的数据集时,可以执行如下步骤进行删除。 在AI Gallery页面的右上角选择“我的Gallery > 我的资产 > 数据”,进入“我的数据”。 在“我的发布”页签,
"工具描述(选填)" } ] 上传数据到指定目录 将下载的原始数据存放在/mnt/sfs_turbo/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data
"工具描述(选填)" } ] 上传数据到指定目录 将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data
1_preprocess_data.sh 、2_convert_mg_hf.sh 中的具体python指令运行。本代码中有许多环境变量的设置,在下面的指导步骤中,会展开进行详细的解释。 如果用户希望自定义参数进行训练,可直接编辑对应模型的训练脚本,可编辑参数以及详细介绍如下。以 llama2-70b