检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
install -e . # 可选,如果选择使用humaneval数据集 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution
install -e . # 可选,如果选择使用humaneval数据集 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution
output_ids,在循环中调用 PretrainedModel.forward() 来做前向推理 PretrainedModel.generate() 操作步骤 本文使用NewBert模型介绍构建自定义模型的流程。 安装AI Gallery SDK。 通过pip在本地或云上开发环境安装AI Gallery
7.13 pytorch-1.8.1 操作流程 使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示: 前提条件 Step1 创建OBS桶和文件夹 Step2 准备训练脚本并上传至OBS Step3 准备镜像主机 Step4 制作自定义镜像
上传tokenizers文件到工作目录中的/home/ma-user/ws/model/{Model_Name}目录,用户根据自己实际规划路径修改;如Qwen2-72B。 具体步骤如下: 进入到${workdir}目录下,如:/home/ma-user/ws,创建tokenizers文件目录将权重和词表文件放置此处,以Qwen2-72B为例。
选择存放OBS并行文件系统下的文件夹,单击“确定”。 挂载成功后,可以在Notebook实例详情页查看到挂载结果。 代码调试。 打开Notebook,打开Terminal,进入步骤7中挂载的目录。 cd /data/demo 执行训练命令: /home/ma-user/anaconda3/envs/pytorch/bin/python
ble路由加速会失败。 路由加速的原理是改变rank编号,所以代码中对rank的使用要统一,如果rank的使用不一致会导致训练异常。 操作步骤 开启ModelArts Lite资源池对应的CCE集群的cabinet插件。 在ModelArts Lite专属资源池列表,单击资源池名称,进入专属资源池详情页面。
install -e . # 可选,如果选择使用humaneval数据集 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution
install -e . # 可选,如果选择使用humaneval数据集 (可选)如果需要在humaneval数据集上评估模型代码能力,请执行此步骤,否则忽略这一步。原因是通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution
端对客户端的双向认证。 可以使用ModelArts提供的以下认证方式: token认证 AK/SK APP认证 WebSocket服务调用步骤如下(以图形界面的软件Postman进行预测,token认证为例): WebSocket连接的建立 WebSocket客户端和服务端双向传输数据
env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤 创建conda env。 在Notebook的Terminal中执行如下命令。其中,my-env是虚拟环境名称,用户可自定义。conda详细参数可参考conda官网。
tensorflow gpu-2.10.0 操作流程 使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示: 前提条件 Step1 创建OBS桶和文件夹 Step2 创建数据集并上传至OBS Step3 准备训练脚本并上传至OBS Step4
接下载数据集。可通过两种方式,将数据集上传至SFS Turbo中。 方式一:将下载的原始数据通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/training_data目录下。
├── service_predict.py # 发送请求的服务 上传精度测试代码到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-3rdLLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_eval目录下,执行如下命令安装性能测试的关依赖。
标签文本输入框中输入新的标签名称,然后单击“确定”。 选中的音频将被自动移动至“已标注”页签,且在“未标注”页签中,标签的信息也将随着标注步骤进行更新,如增加的标签名称、各标签对应的音频数量。 快捷键的使用说明:为标签指定快捷键后,当您选择一段音频后,在键盘中按快捷键,即可为此音
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下运行静态be
”目录下。 已经准备好数据集的输出位置,用于存放输出的标注信息等文件,例如“/test-obs/classify/output/”。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST https://{iam_endpoint}/v3/auth/tokens
必须修改。加载tokenizer与Hugging Face权重时,对应的存放绝对或相对路径。请根据实际规划修改。 do_train true 指示脚本执行训练步骤,用来控制是否进行模型训练的。如果设置为true,则会进行模型训练;如果设置为false,则不会进行模型训练。 cutoff_len 4096
7.13 openmpi-3.0.0 操作流程 使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示: 前提条件 Step1 创建OBS桶和文件夹 Step2 准备脚本文件并上传至OBS中 Step3 准备镜像主机 Step4 制作自定义镜像