检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
tB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。 处理方法 使用单标签分类的数据集进行训练。 父主题: 数据集问题导致训练失败
--served-port ${port} --text 图片内容是什么 相关请求参数说明参照多模态相关请求参数说明。 多模态相关请求参数说明 表1 脚本参数说明 参数 是否必须 参数类型 描述 image_path 是 str 传给模型的图片路径 payload 是 json 单图单轮对话的post请求json,
步处理。以图像识别为例,用户经常会从网上找一些图片用于训练,但是其质量难以保证,有可能图片的名字、路径、后缀名都不满足训练算法的要求;图片也可能有部分损坏,造成无法解码、无法被算法处理的情况。因此,数据校验非常重要,可以帮助人工智能开发者提前发现数据问题,有效防止数据噪声造成的算法精度下降或者训练失败问题。
PI,搭建企业专属方案、LLM驱动的语义搜索、多模态搜索增强。 盘古数字人大脑:基于在MaaS开源大模型部署的模型API,升级智能对话解决方案,含智能客服、数字人。 Dify:支持自部署的应用构建开源解决方案,用于Agent编排、自定义工作流。 操作步骤 登录ModelArts管理控制台。
AI开发基本流程介绍 什么是AI开发 AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行
推理服务测试 推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
imshow在jupyter这样的client/server环境下存在问题。 而matplotlib不存在这个问题。 解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。 Python语言: 1 2 3 4 5 6 from
JupyterLab是一个交互式的开发环境,可以使用它编写Notebook、操作终端、编辑MarkDown文本、打开交互模式、查看csv文件及图片等功能。可以说,JupyterLab是开发者们下一阶段更主流的开发环境。 ModelArts支持通过JupyterLab工具在线打开Not
sh命令后,会自动生成face_detection/detection/sfd目录。 Step6 服务调用 提前准备人物图片,支持'jpg', 'png', 'jpeg'格式。推荐测试图片大小1280*720或1920*1080。 提前准备音频文件audio,支持'wav', 'mp3', 'mp4'格式。
能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。 回归 回归反映的是数据属性值在时间上的特征,产生一个将数据项映射到一个实
ModelArts Standard推理服务访问公网方案 本章节提供了推理服务访问公网的方法。 应用场景 推理服务访问公网地址的场景,如: 输入图片,先进行公网OCR服务调用,然后进行NLP处理; 进行公网文件下载,然后进行分析; 分析结果回调给公网服务终端。 方案设计 从推理服务的算
如下代码以TensorFlow引擎为例,您可以根据实际使用的引擎类型修改model_type参数后使用。 模型输入 key:images value:图片文件 模型输出 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
行过程。 数据集准备。 订阅工作流。 运行工作流。 准备数据集 前往AI Gallery,在“资产集市>数据>数据集”页面下载常见生活垃圾图片。 单击“下载”,选择云服务区域,推荐选择“华北-北京四”,单击“确定”。 进入“下载详情”页面,填写下述参数。 下载方式:选择“ModelArts数据集”。
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
ModelArts在线服务预测请求体大小限制是多少? 服务部署完成且服务处于运行中后,可以往该服务发送推理的请求,请求的内容根据模型的不同可以是文本,图片,语音,视频等内容。 当使用调用指南页签中显示的调用地址(华为云APIG网关服务的地址)预测时,对请求体的大小限制是12MB,超过12MB时,请求会被拦截。
景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。 图2 物体检测
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
ModelArts团队标注的数据分配机制是什么? 目前不支持用户自定义成员任务分配,数据是平均分配的。 当数量和团队成员人数不成比例,无法平均分配时,则将多余的几张图片,随机分配给团队成员。 如果样本数少于待分配成员时,部分成员会存在未分配到样本的情况。样本只会分配给labeler,比如10000张都是未
数据属性:筛选数据的来源,选择“全部”或“推理”。 图1 筛选条件 查看已标注图片 在标注任务详情页,单击“已标注”页签,您可以查看已完成标注的图片列表。图片缩略图下方默认呈现其对应的标签,您也可以勾选图片,在右侧的“选中文件标签”中了解当前图片的标签信息。 查看已标注文本 在数据集详情页,单击“已标
训练物体检测模型 自动学习物体检测项目,在图片标注完成后,通过模型训练得到合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的