检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
类别一致。 选择“OBS目录”,存放结构又分两种情况,“仅包含图片”或“包含图片和标注信息”。 “仅包含图片”:当目录下全是图片时,支持jpg、jpeg、png、bmp格式,嵌套子目录的图片也将全部读入。 “包含图片和标注信息”:根据不同场景类型,结构不同。 图像分类场景,其目录
数据标注 物体检测图片标注,一张图片是否可以添加多个标签? 在物体检测作业中上传已标注图片后,为什么部分图片显示未标注? 父主题: Standard自动学习
类别一致。 选择“OBS目录”,存放结构又分两种情况,“仅包含图片”或“包含图片和标注信息”。 “仅包含图片”:当目录下全是图片时,支持jpg、jpeg、png、bmp格式,嵌套子目录的图片也将全部读入。 “包含图片和标注信息”:根据不同数据类型,结构不同。 图像分类,其目录结构
其中,不同类型的数据集支持不同的功能,如智能标注、团队标注等。详细信息参考表1。 表1 不同类型的数据集支持的功能 数据集类型 标注类型 创建数据集 导入数据 导出数据 发布数据集 修改数据集 管理版本 智能标注 团队标注 自动分组 数据特征 图片 图像分类 支持 支持 支持 支持 支持
图像分类 图像分类项目,是对图像进行分类。需要添加图片并对图像进行分类标注,完成图片标注后开始模型训练,即可快速生成图像分类模型。可应用于商品的自动分类、运输车辆种类识别和残次品的自动分类等。例如质量检查的场景,则可以上传产品图片,将图片标注“合格”、“不合格”,通过训练部署模型,实现产品的质检。
在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。 如果增加了图片,您需要对增加的图片进行重新标注。如果您增删标签,建议对所有的图片进行排查和重新标注。对已标注的数据, 也需要检查是否需要增加新的标签。 在图片都标注完成后,单击右上角“开始训练”,在“训练设置
Resize 调整图片大小。 height:变换后的图片高度。默认值224 width:变换后的图片宽度。默认值224 do_validation:数据扩增前是否进行数据校验。默认值为True。 Rotate 旋转,将图像围绕中心点旋转的操作,操作完成之后保持图片原本的形状不变,不足的部分用黑色填充。
String 文件名称。 source Object 数据源信息,详细请见表3。 width Long 图片长度。 height Long 图片高度。 depth Long 图片深度。 segmented String 分割。 mask_source String 图像分割得到的m
模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自
多标签的标签文件示例,如2.txt文件内容如下所示: Cat Dog 只支持JPG、JPEG、PNG、BMP格式的图片。单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 物体检测 支持两种格式: ModelArts PASCAL VOC 1.0 物体检测的简易模
确保OBS中的文件是非加密状态 上传图片或文件时不要选择KMS加密,否则会导致数据集读取失败。文件加密无法取消,请先解除桶加密,重新上传图片或文件。 图3 OBS桶中的文件未加密 检查图片是否符合要求 目前自动学习不支持四通道格式的图片。请检查您的数据,排除或删除四通道格式的图片。 检查标注框是否符合要求(物体检测)
都不收费。具体如下: 数据集:在ModelArts数据管理中创建数据集时,不收费。 数据标注:在ModelArts数据管理中进行手动标注和智能标注时,不收费。 数据处理:在ModelArts数据管理中创建数据清洗、数据校验、数据选择和数据增强的数据处理任务时,不收费。 但是存储到
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
在线服务部署完成后,单击“预测”页签。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范围和要求,不满足条件的图片会影响预测结果的准确性。 图4 预测样例图 图5 预测结果
入服务预测界面,在“预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参
能包含!<>=&"'特殊字符。 export_images 否 Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录 false:不导出图片到版本输出目录(默认值) remove_sample_usage 否 Boolean 发布时是否
在线服务部署完成后,单击“预测”页签。 在“预测”页签,单击“上传”,上传一个测试图片,单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范围和要求,不满足条件的图片会影响预测结果的准确性。 步骤5:清理资源 体验结束后,建
描述 add_sample_count Integer 处理后新增的图片数量。 create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。 description String 数据处理任务的版本描述。