检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Length Required 服务器无法处理客户端发送的不带Content-Length的请求信息。 412 Precondition Failed 未满足前提条件,服务器未满足请求者在请求中设置的其中一个前提条件。 413 Request Entity Too Large 由于
应用示例 空间API应用示例 计算节点API应用示例
什么是配额? 什么是配额? 为防止资源滥用,平台限定了各服务资源的配额,对用户的资源数量和容量做了限制。如您最多可以创建多少台弹性云服务器、多少块云硬盘。 如果当前资源配额限制无法满足使用需要,您可以申请扩大配额。 怎样查看我的配额? 登录管理控制台。 单击管理控制台左上角的,选择区域和项目。
空间管理 组建空间 管理空间 空间升级与回滚 替换证书
产品优势 多域协同 支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算;
与“节点密码”保持一致即可。 边缘节点部署参数 AI加速卡 不启用:部署常规的CPU规格计算节点 启用:启用边缘节点的AI加速卡,可以大幅减少联邦建模的耗时。通过IEF边缘节点部署时,请确保计算节点的AI加速卡相关功能可用,如需帮助请联系客服或技术支持人员。 纳管节点 用户选择边缘节点
概述 目前TICS支持两种隐匿查询方式: 批量隐匿查询:支持SQL语言查询,适用大数据量批量查询场景。 实时隐匿查询:适用高性能、实时性要求高的查询场景,应用程序可以通过提供的标准API使用。 父主题: 隐匿查询
隐私求交 概述 创建隐私求交作业 执行隐私求交作业 查看作业计算过程和作业报告 删除隐私求交作业
概述 欢迎使用可信智能计算服务TICS (Trusted Intelligent Computing Service)。可信智能计算服务TICS打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,
与“节点密码”保持一致即可。 边缘节点部署参数 AI加速卡 - 不启用:部署常规的CPU规格计算节点 启用:启用边缘节点的AI加速卡,可以大幅减少联邦建模的耗时。通过IEF边缘节点部署时,请确保计算节点的AI加速卡相关功能可用,如需帮助请联系客服或技术支持人员。 纳管节点 - 用户选择边
调用说明 可信智能计算服务TICS提供了REST(Representational State Transfer)风格API,支持您通过HTTPS请求调用。 空间API的调用方法与其他云服务接口调用方法类似,依赖服务终端节点Endpoint,但不支持AK/SK鉴权认证。详情请参见构造请求。
什么是项目? 什么是项目? 云的每个区域默认对应一个项目,这个项目由系统预置,用来隔离物理区域间的资源(计算资源、存储资源和网络资源),以区域默认单位为项目进行授权,IAM用户可以访问您账号中该区域的所有资源。 如果您希望进行更加精细的权限控制,可以在区域默认的项目中创建子项目,
隐匿查询 概述 批量隐匿查询 实时隐匿查询
TICS使用流程简介 本文档是一个TICS入门教程,介绍了如何在TICS控制台完成端到端的全流程使用。 可信智能计算服务TICS( Trusted Intelligence Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数
应用开发简介 多方安全计算是可信智能计算服务(TICS)提供的关系型数据安全共享和分析功能。 您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。
概述 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相
管理文件 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。通过文件管理,参与方无需通过登录后台手动导入模型文件,而是直接将模型文件上传到数据目录进行管理。 使用文件管理功能后,创建联邦学习作业时用户可以便捷地选择自己以前上传的执行脚本、训练模型、数据文件、权重参数
model.fit(train_x, train_y, batch_size=b_size, epochs=jobParam.epoch, shuffle=True, verbose=1) print(f"Training job [{jobParam
"projects": [ { "domain_id": "65382450e8f64ac0870cd180d14e684b", "is_domain": false, "parent_id": "
应用场景 政企信用联合风控 金融机构对于中小微企业的信用数据通常不足,央行征信数据覆盖率有限,不良企业多家骗贷事件屡有发生。金融机构与政府部门,如税务部门、市场监管部门、水电公司等在保护各方原始数据隐私的前提下,通过多方联合建模,金融机构补充了风控模型特征维度,提升模型准确率。 优势: