检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建预测大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。
创建专业大模型部署任务 平台支持部署预置的专业大模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。 表1 专业大模型部署参数说明
统计NLP大模型调用信息 针对调用的大模型,平台提供了统一的管理功能。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 单击左侧导航栏“调用统计”,选择“NLP”页签。 选择当前调用的NLP大模型,可以按照不同时间跨度查看当前模型的调用
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、结构和语言的理解,因
创建NLP大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。
创建CV大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确、更有针对性的输出,从而提高模型在特定任务上的性能。 在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造 。如果提示词模板满足不了使用需求可再单独创建。
日期列的列名。例如,["date"]表示csv数据中date列为日期列,默认设置为[],表示没有日期列,选择全部数据做训练。 标识列 在时间序列中可以定义粒度的id相关的列。 历史窗口大小 指模型在训练时基于多少个历史数据点作为输入。取值范围为[2, 200],默认值为7,表示使用7个历史数据点作为输入进行训练。
工作流介绍 Agent开发平台的工作流由多个节点构成,节点是组成工作流的基本单元。平台支持多种节点,包括开始、结束、大模型、意图识别、提问器、插件、判断、代码和消息节点。 创建工作流时,每个节点需要配置不同的参数,如输入和输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实
》“使用数据工程构建数据集 > 数据集格式要求”。 模型开发-训练、评测最小数据量要求 使用ModelArts Studio平台训练、评测不同模型时,存在不同数据量的限制。以NLP大模型为例,请参考《用户指南》“开发盘古NLP大模型 > 使用数据工程构建NLP大模型数据集”。 模型开发-模型最小训练单元
对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见预测大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点
NLP大模型自动评测指标说明-使用评测模板 评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力 综合能力是计算所有数据集通过率的加权平均数。 表3 NLP大模型人工评测指标说明 评测指标(人工评测)
训练类型 选择“微调”。 基础模型 选择所需微调的基础模型。 训练参数 数据集 训练数据集。 自定义L1预训练模型目录 自定义预训练模型所在的OBS路径。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 是否使用自定义L1预训练模型 是否使用自定义预训练模型
adamw是一种改进的Adam优化器,增加了权重衰减机制,有效防止过拟合。 数据配置 训练数据 选择训练模型所需的数据集。 验证数据 若选择“从训练数据拆分”,则需进一步配置数据拆分比例。 若选择“从已有数据导入”,则需选择导入的数据集。 资源配置 训练单元 创建当前训练任务所需的训练单元数量。
关注通用性:预训练旨在让模型学习广泛的通用知识,建立词汇、句法和语义的基础理解。通过大规模的通用数据训练,模型可以掌握丰富的语言模式,如语言结构、词义关系和常见的句型。 使用大规模通用数据:通常使用海量的无监督数据(如文本语料库、百科文章),这些数据覆盖广泛的领域和语言表达方式,帮助模型掌握广泛的知识。 适合广泛应用
管理,您可以跳过本章节,不影响您使用盘古的其他功能。 您可以使用统一身份认证服务(IAM)并结合ModelArts Studio大模型开发平台提供的“成员管理”功能实现子用户精细的权限管理。 创建用户组 管理员可以创建用户组,并给用户组授予策略或角色,然后将用户加入用户组,使得用户组中的用户获得相应的权限。
华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。
盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算
对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见CV大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点
模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点