检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如需使用该场景量化方法,请自行准备kv-cache量化系数,格式和per-tensor静态量化所需的2. 抽取kv-cache量化系数生成的json文件一致,只需把每一层的量化系数修改为列表,列表的长度为kv的头数,列表中每一个值代表每一个kv头使用的量化系数。内容示例如下: 在使用OpenAI接口或vLLM
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 如果训练数据和代码经常变动,则不建议把数据、代码放到容器镜像里,避免频繁地构建容器镜像。
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表11
管理AI Gallery数据集 编辑数据集介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在数据集详情页,选择“数据集介绍”页签,单击右侧“编辑介绍”。 编辑数据集基础设置和数据集描述。 表1 数据集介绍的参数说明 参数名称
AI Gallery使用流程 AI Gallery提供了模型、数据集、AI应用等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。
自定义模型规范 AI Gallery除了支持托管文本生成和文本问答任务类型的模型,还支持托管其他任务类型的模型,其他任务类型的模型被称为自定义模型。但是托管的自定义模型要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义模型的使用流程 托管模型到AI
托管镜像到AI Gallery 创建镜像资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“镜像”。 在“创建镜像”弹窗中配置参数,单击“创建”。 表1 创建镜像 参数名称 说明 英文名称 必填项,镜像的英文名称。
1。 在ModelArts官方提供的基础镜像上,构建一个用于ModelArts Standard推理部署的镜像。 在模型软件包和依赖包的同层目录下,创建并编辑Dockerfile。 vim Dockerfile Dockerfile内容如下: FROM swr.cn-southwest-2
full 用于指定微调策略类型,可选择值【full、lora】如果设置为"full",则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 dataset identity,alpaca_en_demo 【可选】注册在dataset_info
全参微调:直接在模型上训练,影响模型全量参数的微调训练,效果较好,收敛速度较慢,训练时间较长。 LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 增量预训练:在现有预训练模型基础上,利用新数据或特定领域的数据增强模
ok实例后,确认不使用EVS就及时删除数据,释放资源,避免产生费用。 Notebook中保存的镜像大小不超过35G,镜像层数不能超过125层。否则镜像会保存失败。 Standard训练作业 训练日志仅保留30天,超过30天会被清理。如果用户需要永久保存日志,请在创建训练作业时,打
年9月15日期间的样本。 score 否 String 根据置信度筛选。 slice_thickness 否 String DICOM层厚,通过层厚筛选样本。 study_date 否 String DICOM扫描时间。 time_in_video 否 String 视频中某个时间。
1。 在ModelArts官方提供的基础镜像上,构建一个用于ModelArts Standard推理部署的镜像。 在模型软件包和依赖包的同层目录下,创建并编辑Dockerfile。 vim Dockerfile Dockerfile内容如下: FROM swr.cn-southwest-2
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 不建议把数据、代码放到容器镜像里。因为对应内容应该是经常变动的,会导致频繁的容器镜像构建操作。
ModelArts imageNet 1.0:目录方式,只支持单标签 相同标签的图片放在一个目录里,并且目录名字即为标签名。当存在多层目录时,则以最后一层目录为标签名。 示例如下所示,其中Cat和Dog分别为标签名。 dataset-import-example ├─Cat │ 10
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表6
ch如果开了sync-batch-norm,多机会慢,因开了sync-batch-norm以后,每一个iter里面每个batch-norm层都要做同步,通信量很大,而且要所有节点同步。 解决方案2 关掉sync-batch-norm,或者升pytorch版本,升级pytorch到1
finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all dataset
场景描述 ModelArts作为顶层服务,其部分功能依赖于其他服务的访问权限。本章节主要介绍对于IAM子账号使用ModelArts时,如何根据需要开通的功能配置子账号相应权限。 权限列表 子账号的权限,由主用户来控制,主用户通过IAM的权限配置功能设置用户组的权限,从而控制用户组
finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all dataset