检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景描述 ModelArts作为顶层服务,其部分功能依赖于其他服务的访问权限。本章节主要介绍对于IAM子账号使用ModelArts时,如何根据需要开通的功能配置子账号相应权限。 权限列表 子账号的权限,由主用户来控制,主用户通过IAM的权限配置功能设置用户组的权限,从而控制用户组
finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all dataset
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表8
发布和管理AI Gallery项目 在AI Gallery中,您可以将个人开发的Notebook代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台,选择“开发环境
准备镜像环境 准备训练模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置物理机环境操作。 镜像地址 本教程中用到的训练和推理的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 基础镜像 swr.cn-southwest-2
创建IAM用户并授权使用MaaS 配置ModelArts委托授权章节中介绍的一键式自动授权方式创建的委托的权限比较大,基本覆盖了依赖服务的全部权限。如果华为云账号已经能满足您的要求,则不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用MaaS服务的功能。 ModelArt
使用DCGM监控Lite Server资源 场景描述 本文主要介绍如何配置DCGM监控。DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、诊断、系统验证、策略、电源和时钟管理、配置管理和审计等。 前提条件 裸金
使用ModelArts VS Code插件调试训练ResNet50图像分类模型 应用场景 Notebook等线上开发工具工程化开发体验不如IDE,但是本地开发服务器等资源有限,运行和调试环境大多使用团队公共搭建的CPU或GPU服务器,并且是多人共用,这带来一定的环境搭建和维护成本
模型适配 MindSpore Lite是华为自研的推理引擎,能够最大化地利用昇腾芯片的性能。在使用MindSpore Lite进行离线推理时,需要先将模型转换为mindir模型,再利用MindSpore Lite作为推理引擎,将转换后的模型直接运行在昇腾设备上。模型转换需要使用converter_lite工具。
自定义镜像使用场景 在AI业务开发以及运行的过程中,一般都会有复杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换
SDXL ComfyUI插件基于DevServer适配PyTorch NPU推理指导(6.3.904) ComfyUI是一款基于节点工作流的Stable Diffusion操作界面。通过将Stable Diffusion的流程巧妙分解成各个节点,成功实现了工作流的精确定制和可靠复
创建IAM用户并授权使用ModelArts 快速配置ModelArts委托授权章节中介绍的一键式自动授权方式创建的委托的权限比较大,基本覆盖了依赖服务的全部权限。如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用ModelArts服务的其他功能。
SDXL&SD1.5 ComfyUI插件基于DevServer适配PyTorch NPU推理指导(6.3.906) ComfyUI是一款基于节点工作流的Stable Diffusion操作界面。通过将Stable Diffusion的流程巧妙分解成各个节点,成功实现了工作流的精确
Wav2Lip基于DevServer适配PyTorch NPU训练指导(6.3.902) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型,可以用于NPU芯片训练。
Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907) 本文档主要介绍如何在ModelArts Lite的DevServer环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型,可以用于NPU芯片训练。
在DevServer上部署SD WebUI推理服务 本章节主要介绍如何在ModelArts的DevServer环境上部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 步骤一 准备环境 请参考DevServer资源开通,购买DevServer资源,并确保
Dense(256, activation='relu'), tf.keras.layers.Dropout(0.2), # 对输出层命名output,在模型推理时通过该命名取结果 tf.keras.layers.Dense(10, activation='softmax'
错误码 当您调用API时,如果遇到“APIGW”开头的错误码,请参见API网关错误码进行处理。 状态码 错误码 错误信息 描述 处理措施 100 ModelArts.0116 The expected {0} exceeds the quota limit. 资源{0}超过配额限制。
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux