检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自定义镜像规范 AI Gallery支持托管自定义镜像,但是托管的自定义镜像要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义镜像的使用流程 托管自定义镜像,操作步骤请参考托管模型到AI Gallery。 如果自定义镜像要支持训练,则需要满足自定义镜像规范(训练)。
资产识别与管理 资产识别 用户在AI Gallery中的资产包括用户发布的AI资产以及用户提供的一些个人信息。 AI资产包括但不限于文本、图形、数据、文章、照片、图像、插图、代码、AI算法、AI模型等。 用户的个人信息包括: 用户注册时提供的昵称、头像、邮箱。 用户参加实践时提供的姓名、手机号、邮箱。
安装Gallery CLI配置工具 场景描述 Gallery CLI配置工具支持将AI Gallery仓库的资产下载到云服务端,便于在云服务本地进行训练、部署推理。 Gallery CLI配置工具支持将单个超过5GB的文件从本地上传至AI Gallery仓库中。 约束限制 Gallery
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表11
推理部署使用场景 AI模型开发完成后,在ModelArts服务中可以将AI模型创建为AI应用,将AI应用快速部署为推理服务,您可以通过调用API的方式把AI推理能力集成到自己的IT平台,或者批量生成推理结果。 图1 推理简介 训练模型:可以在ModelArts服务中进行,也可以在
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 如果训练数据和代码经常变动,则不建议把数据、代码放到容器镜像里,避免频繁地构建容器镜像。
Notebook使用场景 ModelArts提供灵活开放的开发环境,您可以根据实际情况选择。 ModelArts提供了CodeLab功能,一方面,一键进入开发环境,同时预置了免费的算力规格,可直接免费体验Notebook功能;另一方面,针对AI Gallery社区发布的Notebook样例(
管理AI Gallery数据集 编辑数据集介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在数据集详情页,选择“数据集介绍”页签,单击右侧“编辑介绍”。 编辑数据集基础设置和数据集描述。 表1 数据集介绍的参数说明 参数名称
AI Gallery使用流程 AI Gallery提供了模型、数据集、AI应用等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。
自定义模型规范 AI Gallery除了支持托管文本生成和文本问答任务类型的模型,还支持托管其他任务类型的模型,其他任务类型的模型被称为自定义模型。但是托管的自定义模型要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义模型的使用流程 托管模型到AI
1。 在ModelArts官方提供的基础镜像上,构建一个用于ModelArts Standard推理部署的镜像。 在模型软件包和依赖包的同层目录下,创建并编辑Dockerfile。 vim Dockerfile Dockerfile内容如下: FROM swr.cn-southwest-2
托管镜像到AI Gallery 创建镜像资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“镜像”。 在“创建镜像”弹窗中配置参数,单击“创建”。 表1 创建镜像 参数名称 说明 英文名称 必填项,镜像的英文名称。
full 用于指定微调策略类型,可选择值【full、lora】如果设置为"full",则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 dataset identity,alpaca_en_demo 【可选】注册在dataset_info
年9月15日期间的样本。 score 否 String 根据置信度筛选。 slice_thickness 否 String DICOM层厚,通过层厚筛选样本。 study_date 否 String DICOM扫描时间。 time_in_video 否 String 视频中某个时间。
ok实例后,确认不使用EVS就及时删除数据,释放资源,避免产生费用。 Notebook中保存的镜像大小不超过35G,镜像层数不能超过125层。否则镜像会保存失败。 Standard训练作业 训练日志仅保留30天,超过30天会被清理。如果用户需要永久保存日志,请在创建训练作业时,打
1。 在ModelArts官方提供的基础镜像上,构建一个用于ModelArts Standard推理部署的镜像。 在模型软件包和依赖包的同层目录下,创建并编辑Dockerfile。 vim Dockerfile Dockerfile内容如下: FROM swr.cn-southwest-2
建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层,例如:先OS,再cuda驱动,再Python,再pytorch,再其他依赖包。 不建议把数据、代码放到容器镜像里。因为对应内容应该是经常变动的,会导致频繁地容器镜像构建操作。
ModelArts imageNet 1.0:目录方式,只支持单标签 相同标签的图片放在一个目录里,并且目录名字即为标签名。当存在多层目录时,则以最后一层目录为标签名。 示例如下所示,其中Cat和Dog分别为标签名。 dataset-import-example ├─Cat │ 10
2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness String DICOM层厚,通过层厚筛选样本。 study_date String DICOM扫描时间。 time_in_video String 视频中某个时间。 表6
创建数据分发Sampler,使每个进程加载一个mini batch中不同部分的数据。 网络中相邻参数分桶,一般为神经网络模型中需要进行参数更新的每一层网络。 每个进程前向传播并各自计算梯度。 模型某一层的参数得到梯度后会马上进行通讯并进行梯度平均。 各GPU更新模型参数。 具体流程图如下: 图1 多机多卡数据并行训练