检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本地上传:将本地数据直接通过Internet上传至OBS指定目录后,再导入数据集。 表格型数据来源 表格数据集支持从5种数据源导入数据,分别为对象存储服务(OBS)、数据仓库服务(DWS)、数据湖探索服务(DLI)、MapReduce服务(MRS)和本地上传。 数据集中的数据导入入口 数据集中的数据导入有5个入口。
镜像过大,卸载原来的包重新打包镜像,最终镜像会变小吗? 不会,反而会变大。因为Docker镜像的层原因,当前的镜像是基于原来的镜像制作,而原来的镜像层数是无法改变的,层不变的情况下,大小是不变的,卸载包或者删除数据集,会新增镜像层,镜像反而会变大,这和传统概念的存储不一样。 父主题: Standard镜像相关
multi-lora 什么是multi-lora LoRA(Low-Rank Adaptation)是一种适用于大模型的轻量化微调技术方法。原理是通过在模型层中引入低秩矩阵,将大模型的权重降维处理,来实现高效的模型适配。相比于传统的微调方法,LoRA不仅能大幅减少所需的训练参数,还降低了显存和计算
更小的训练成本得到小模型:相较于训练独立的LLM大模型,Eagle仅需训练一个自回归层。这使得其训练成本相较于训练一个独立的LLM模型要小得多。 为每个模型提供针对性的投机模型: Eagle的模型大小及结构,与基模型的某一层完全相同,这使得它的大小远远小于其基模型。解决了对于部分原始LLM模型,找不到合适的投机模型的问题。
全检测等能力。 安全防护套件覆盖和使用堡垒机,增强入侵检测和防御能力 ModelArts服务部署主机层、应用层、网络层和数据层的安全防护套件。及时检测主机层、应用层、网络层和数据层的安全入侵行为。 ModelArts服务涉及对互联网开放的Web应用,采用了统一推荐的Web安全组件
msprobe梯度监控 梯度监控工具提供了将模型梯度数据导出的能力。使用梯度监控工具,可以实现对训练过程模型每一层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监
托管数据集到AI Gallery AI Gallery上每个资产的文件都会存储在线上的AI Gallery存储库(简称AI Gallery仓库)里面。每一个数据集实例视作一个资产仓库,数据集实例与资产仓库之间是一一对应的关系。例如,模型名称为“Test”,则AI Gallery仓
性能调优总体原则和思路 PyTorch在昇腾AI处理器的加速实现方式是以算子为粒度进行调用(OP-based),即通过Python与C++调用CANN层接口Ascend Computing Language(AscendCL)调用一个或几个亲和算子组合的形式,代替原有GPU的实现方式,具体逻辑模型请参考PyTorch自动迁移。
供一整套解决方案。 应用中心介绍 “MaaS应用实践中心”提供基于行业客户应用场景的AI解决方案。MaaS提供的模型服务和华为云各AI应用层构建工具之间相互连通,通过灵活的组合方案,来帮助客户快速解决模型落地应用时所面临的业务及技术挑战。 MaaS应用实践中心结合KooSearc
Executor number. -dc, --driver-cores INTEGER Driver cores. -dm, --driver-memory TEXT Driver memory (eg. 2G/2048MB). --conf TEXT
ModelArts产品架构请参考图1。 图1 ModelArts产品架构 算力层提供全系列昇腾硬件,万卡级大规模集群管理能力,提供资源负载调度管理能力,兼容业界主流AI开发调试、训练推理框架。 AI平台层提供端到端的AI开发工具链,支持开发者一站式完成模型开发和上线,并提供高效的资
存消耗,从而实现超大规模模型训练。流水线并行也叫层间并行,层输入输出的依赖性使得设备需要等待前一步的输出,通过batch进一步切分成微batch, 网络层在多个设备上的特殊安排和巧妙的前向后向计算调度,可以最大程度减小设备等待(计算空泡),从而提高训练效率。 学习率预热 不同的学
Standard的WebSocket在线服务全流程开发 背景说明 WebSocket是一种网络传输协议,可在单个TCP连接上进行全双工通信,位于OSI模型的应用层。WebSocket协议在2011年由IETF标准化为RFC 6455,后由RFC 7936补充规范。Web IDL中的WebSocket API由W3C标准化。
析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础上Step3
析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚
析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三
析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三
析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三:启动训练脚本
Administrator 数据湖探索DLI DLI FullAccess MapReduce服务MRS MRS Administrator 数据仓库服务GaussDB(DWS) DWS Administrator 云审计服务CTS CTS Administrator AI开发平台ModelArts
使用WebSocket协议的方式访问在线服务 背景说明 WebSocket是一种网络传输协议,可在单个TCP连接上进行全双工通信,位于OSI模型的应用层。WebSocket协议在2011年由IETF标准化为RFC 6455,后由RFC 7936补充规范。Web IDL中的WebSocket API由W3C标准化。