检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在“工业智能体控制台>工业AI开发>工业AI开发工作流”选择“通用图像分类工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。
标注数据 针对已经选择的数据,在应用开发的“数据标注”页面,ModelArts Pro会自动标注数据,自动标注完成后,可对每个数据的标注结果进行核对和确认。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,详情请见标注数据。 自动标注数据 在“数据标注”页面
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“云状识别工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,等
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“刹车盘识别工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,
自动标注数据 针对已经选择的数据和SKU,在应用开发的“数据标注”页面,ModelArts Pro会自动标注数据,自动标注完成后,可对每个数据的标注结果进行核对和确认。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并已执行到“SKU创建”步骤,详情请见创建SKU。
择标签颜色,单击“确定”完成修改。 批量删除:在“全部标签”区域中,单击操作列的删除图标,在弹出对话框中,可选择“仅删除标签”或“删除标签及仅包含此标签的标注对象”,然后单击“确定”。 添加文件 除了数据集输入位置自动同步的数据外,您还可以在ModelArts界面中,直接添加文件,用于数据标注。
数据集版本,默认按V001、V002递增规则进行命名,您也可以在发布时自定义设置。 您可以将任意一个版本设置为当前目录,即表示数据集列表中进入的数据集详情,为此版本的数据及标注信息。 针对每一个数据集版本,您可以通过“存储路径”参数,获得此版本对应的Manifest文件格式的数据集。可用于导入数据或难例筛选操作。
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型交并比和误差变化。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并已执行完“数据标注”步骤,详情请见标注数据。 训练模型 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并已执行到“数据标注”步骤确认标注结果,详情请见自动标注数据。 训练模型 在“模型训练”页面,单击“训练”。 模型训练一般需要
进行分类时,标签可以以“snow”(雪)、“rainy”(雨)等作为分类的类别。 数据集要求 文件名规范,不能有中文,不能含有空格、制表符及除中划线下划线外的特殊符号。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在ModelArts
更新应用版本 在模型构建过程中,您可能需要根据训练结果,不停的调整数据、训练参数或模型,以获得一个满意的模型。 因此您可以修改模型的配置信息以匹配业务变化。每修改一次,更新成一个版本,不同的作业版本之间,能快速进行对比,获得对比结果。 前提条件 已在HiLens套件控制台选择“H
以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 基于已设计好的实体标签准备文本数据。每个实体标签需要准备20个及以上数据,为了训练出效果较好的模型,建议每个实体标签准备100个以上的数据。 本工作流只支持上传未标注数据,将待标注的内容放在一个文本文件内。
“编码”选择“UTF-8”格式。 以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 文本数据至少包含2个及以上的标签。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 多语种文本分类工作流仅支持对单语种的文本分
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业
以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 基于已设计好的分类标签准备文本数据。每个分类标签需要准备5个及以上数据,为了训练出效果较好的模型,建议每个分类标签准备100个以上的数据。 针对未标注数据,将待标注的内容放在一个文本文件内,通用文本分类