检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
其中,各参数介绍如下: 变量取值:输入参数的各个变量取值。取值可以是数据集中的字段变量,也可以自定义变量值。 保存至任务输出参数(可选):该参数为输出的结果。由于输出结果为问答对形式,因此生成的问题必须选择context参数,回答必须选择target参数。 模型选择:选择平台预置的大模型,用于指令合成。
Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存,避免频繁调用。 如果您的华为云账号已升级为
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布 > 数据流通”,单击界面右上角“创建流通任务”。 在“创建流通任务”页面,选择数据集模态,如“其他 > 自定义”类型的数据集。 图1 选择数据集模态 选择数据集,单击“下一步”。
ss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
流通图片类数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 单个图片类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 创建文本类数据集流通任务步骤如下: 登录ModelArts
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类清洗算子能力清单 算子分类 算子名称 算子描述 科学计算 气象预处理 将二进制格式的气象数据文件转换成结构化JSON数据。 父主题: 数据集清洗算子介绍
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据清洗”,单击界面右上角“创建清洗任务”。 在“创建清洗任务”页面,选择需要清洗的文本类数据集,单击“下一步”。 进入“清洗步骤编排”页面。对于文本类数据集,可选择的清洗算子请参见文本类清洗算子能力清单。
"V", "Z"]} geo_range:定义了数据覆盖的地理范围,纬度(lat)从-90.0到90.0,经度(lon)从0.0到360.0。 time_range:数据的时间范围,时间戳格式为毫秒数。 total_size:数据文件的总大小,单位为字节。 surface_featur
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据清洗”,单击界面右上角“创建清洗任务”。 在“创建清洗任务”页面,选择需要清洗的视频类数据集,单击“下一步”。 进入“清洗步骤编排”页面。对于视频类数据集,可选择的清洗算子请参见表1。
高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 数据工程操作流程见图1、表1。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据清洗”,单击界面右上角“创建清洗任务”。 在“创建清洗任务”页面,选择需要清洗的气象类数据集,单击“下一步”。 进入“清洗步骤编排”页面。对于气象类数据集,可选择的清洗算子请参见表1。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据清洗”,单击界面右上角“创建清洗任务”。 在“创建清洗任务”页面,选择需要清洗的图片类数据集,单击“下一步”。 进入“清洗步骤编排”页面。对于图片类数据集,可选择的清洗算子请参见表1。
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据标注”,单击页面右上角“创建标注任务”。 在“创建标注任务”页面选择需要标注的文本类数据集,并选择标注项。 选择标注项时,不同类型的数据文件对应的标注项有所差异,可基于页面提示进行选择。
预置模型。 用户在平台中可试用、已订购的预置模型。 用户自行发布的模型。 用户可以将训练完成的模型发布为模型资产。发布的模型支持查看详细信息、编辑属性、删除、导出、导入等操作。 管理模型资产 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“空间资产
直到达到所需的标注粒度。如图2,首先标注视频中的“大类别”(如“动物”),然后根据该大类别进一步细分为多个子类。这种方式可以更精细地表示视频中涉及的不同对象或情境。 图2 多层级分类示例-声音分类 文本描述:如图3,文本描述允许标注者以文字的形式为视频片段提供更详细的说明或描述。
录和管理数据集的版权信息,确保数据的使用合法合规,并清晰地了解数据集的来源和相关的版权授权。通过填写这些信息,可以追溯数据的来源,明确数据使用的限制和许可,从而保护数据版权并避免版权纠纷。 单击页面右下角“立即创建”,回退至“数据导入”页面,在该页面可以查看数据集的任务状态,若状态为“运行成功”,则数据导入成功。
选择标注项为“图片Caption”且开启AI预标注功能时,可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员需要对全部的数据进行人工标注后才可提交标注结果。 选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。 标注审核 是否审核 否,标注后不进行审核操作。
为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 标注图片类数据集、标注视频类数据集 发布图片、视频类数据集 评估图片、视频类数据集 平台预置了多种数据类型的基础评估
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如