检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
等信息,如图4所示。 图4 Tasks基本信息 在HBase的Web UI页面中,Table Details页面展示的是HBase存储表的概要信息,如图5所示。 图5 TableDetails 在HBase的Web UI页面中,Debug dump页面展示的是HBase的Debug信息,如图6所示。
后,使用Hive对原始数据进行导入、分析等操作,展示了如何构建弹性、低成本的离线大数据分析。 方案架构 Hive是建立在Hadoop上的数据仓库框架,提供大数据平台批处理计算能力,能够对结构化/半结构化数据进行批量分析汇总完成数据计算。提供类似SQL的Hive Query Lan
Spark SQL:使用Spark提供的类似SQL的Spark SQL语句,实时查询和分析用户数据。 Hive:建立在Hadoop基础上的开源的数据仓库。MRS支持提交HiveScript脚本和直接执行Hive SQL语句。 Flink:提供一个分布式大数据处理引擎,可对有限数据流和无限数据流进行有状态计算。
Impala SQL接口介绍 Impala SQL提供对HiveQL的高度兼容性,Impala使用SQL作为其查询语言,为了保护用户在技能开发和查询设计上的投资,Impala提供了与Hive查询语言(HiveQL)的高度兼容性。 由于Impala使用与Hive相同的元数据存储来记录有关表结
MR任务日志在HDFS上的归档路径 是 MR任务日志丢失 /tmp/hadoop-yarn/staging 固定目录 保存AM运行作业运行日志、作业概要信息和作业配置属性 否 任务运行异常 /tmp/hadoop-yarn/staging/history/done_intermediate
管理Loader作业,包括创建作业、查询作业、更新作业、删除作业、激活作业、去激活作业、启动作业、停止作业。 Metadata Repository 元数据仓库,存储和管理Loader的连接器、转换步骤、作业等数据。 HA Manager 管理Loader Server进程的主备状态,Loader
1版本为例,讲解如何使用永洪BI访问安全模式集群的HetuEngine。 方案架构 出于管理和信息收集的需要,企业内部会存储海量数据,包括数目众多的各种数据库、数据仓库等,此时会面临数据源种类繁多、数据集结构化混合、相关数据存放分散等困境,导致跨源查询开发成本高,跨源复杂查询耗时长。 HetuEngin
、Hudi等数据源的能力。对于Hudi数据源调优,可以分为对Hudi表本身和对集群环境的调优。 Hudi表调优 可参考如下建议优化表和数据设计: 建表时尽量按照频繁使用的过滤条件字段进行分区。 如果大部分查询场景均带有主键或主键子集的等值查询,建议使用bucket索引建表,并将查询字段作为分桶键。
本章节适用于MRS 3.x及后续版本。 数个成品Hadoop集群由于NameNode超负荷运行并失去响应而发生故障。 这种阻塞现象是由于Hadoop的初始设计造成的。在Hadoop中,NameNode作为单独的机器,在其namespace内协调HDFS的各种操作。这些操作包括获取数据块位置,列出
本章节适用于MRS 3.x及后续版本。 数个成品Hadoop集群由于NameNode超负荷运行并失去响应而发生故障。 这种阻塞现象是由于Hadoop的初始设计造成的。在Hadoop中,NameNode作为单独的机器,在其namespace内协调HDFS的各种操作。这些操作包括获取数据块位置,列出
Kafka应用开发简介 Kafka简介 Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点:
MemArtsCC基本原理 MemArtsCC是一款面向存算分离架构的分布式计算侧缓存系统,采用极轻量化的架构设计,部署在计算侧的集群中,通过智能预取远端对象存储上的数据提供高速缓存能力,从而来加速计算任务执行。 MemArtsCC在存储层面将远端对象存储(OBS)上的对象进行切
Kafka应用开发简介 Kafka简介 Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点:
Kafka应用开发简介 Kafka简介 Kafka是一个分布式的消息发布-订阅系统。 它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点:
Kafka应用开发简介 Kafka简介 Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点:
当数据发生倾斜(某一部分数据量特别大),虽然没有GC(Gabage Collection,垃圾回收),但是task执行时间严重不一致。 需要重新设计key,以更小粒度的key使得task大小合理化。 修改并行度。 调用rebalance操作,使数据分区均匀。 缓冲区超时设置 由于tas
库,支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。 ClickHouse的设计优点: 数据压缩比高 多核并行计算 向量化计算引擎 支持嵌套数据结构 支持稀疏索引 支持数据Insert和Update ClickHouse的应用场景:
库,支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。 ClickHouse的设计优点: 数据压缩比高 多核并行计算 向量化计算引擎 支持嵌套数据结构 支持稀疏索引 支持数据Insert和Update ClickHouse的应用场景:
库,支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常优异,比其他分析型数据库速度快一个数量级。 ClickHouse的设计优点: 数据压缩比高 多核并行计算 向量化计算引擎 支持嵌套数据结构 支持稀疏索引 支持数据Insert和Update ClickHouse的应用场景:
快速开发HBase应用 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。