检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统、执行系统: 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Age
看下详细的调用总量、调用成功量与调用失败量。 图2 查看调用量概览信息 图3 查看调用量详情 通过“运营面板”功能查看调用量 登录盘古大模型套件平台。 在左侧导航栏中选择“运营面板”,通过运营面板查看模型访问总数、模型回复时的响应时长、兜底回复比例与输入/输出token信息。 图4
自监督训练参数说明 参数名称 说明 模型类型 选择“LLM”。 训练类型 选择“自监督训练”。 训练模型 选择训练所需要的模型,模型详细介绍请参见选择模型与训练方法。 训练参数 指定用于训练模型的超参数。 训练参数说明和调参策略请参见自监督微调训练参数说明。 checkpoints 模型训练任务
ext_stream_callback, tool_stream_callback) StreamCallBack的实现与定义与LLM的回调完全相同。 父主题: Agent(智能代理)
为什么微调后的模型,回答中会出现乱码 为什么微调后的模型,回答会异常中断 为什么微调后的模型,只能回答在训练样本中学过的问题 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 为什么微调后的模型,评估结果很好,但实际场景表现却很差 多轮问答场景,为什么微调后的效果不好 数据量满足要求,为什么微调后的效果不好
选择模型与训练方法 NLP大模型 NLP大模型主要用于处理和理解人类语言,能够实现对话问答、文案生成和阅读理解等任务,并具备逻辑推理、代码生成以及插件调用等高阶能力。 NLP大模型提供了基模型和功能模型两种类型: 基模型:已经在大量数据上进行了预训练,学习并理解了各种复杂特征和模
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集
调用边缘模型 调用边缘模型的步骤与使用“在线部署”调用模型的步骤相同,具体步骤请参考使用API调用模型。 父主题: 部署为边缘服务
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
部署边缘模型 进入盘古大模型套件平台,进入“模型开发 > 模型部署 > 边缘部署”,单击右上角“部署”按钮。 在创建部署页面选择模型与部署资产,选择部署方式为边缘部署,输入推理实例数(根据边缘资源池的实际资源选择),输入服务名称,单击“立即创建”。 创建成功后,可在“模型部署 >
或指模型没有很好地捕捉到数据特征,不能够很好地拟合数据。 损失函数 损失函数(Loss Function)是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数。它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。 推理相关概念 表2
理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比如“以上是金融领域的新闻”、“以上是一篇xx领域的xxx文档”。 例如,“结合金融领域相关知识,生成一份调研报告大纲,报告主题是区块链洞察”、“以上是
\"relation_operator\":\"名称与内容的逻辑关系\"}],\"having_filters\":[{\"value\":[\"值内容\"],\"caption\":\"度量名称\",\"relation_operator\":\"名称与内容的逻辑关系\"}]},\"orde
和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理。 定义一个Tool Retriever: from pangukitsappdev.tool.in
例如,需要构建一个企业助理应用,该应用需要具备预定会议室、创建在线文档和查询报销信息等功能。在构建此应用时,需要将预定会议室与创建在线文档等功能的API接口定义为一系列的工具,并通过AI助手,将这些工具与大模型进行绑定。当用户向AI助手提问时,大模型就会根据用户的问题自动规划调用相应工具,从而实现对应的功能。
数据管理”,在“我的数据集”页签找到未发布的数据集,单击操作列“版本发布”执行发布数据集操作。 对不再使用的数据集可以单击“版本收回”撤销当前版本。 图1 发布数据集 父主题: 准备盘古大模型训练数据集
终端节点 终端节点(endpoint)即API服务的终端地址,通过该地址与API进行通信和交互。获取步骤如下: 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 图1 服务管理 图2 申请开通服务 在“概览
和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理,示例如下: 定义一个Tool Retriever: final List<Tool> toolList
资产数量与模型类型关系如下。 表1 部署模型 模型类型 推理资产占有数量 盘古-NLP-N1 系列模型 部署1实例占用0.125个推理单元。 盘古-NLP-N2 系列模型 部署1实例占用0.5个推理单元。 盘古-NLP-N4 系列模型 部署1实例占用1个推理单元。 父主题: 平台资源管理
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要