检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可以使
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格和格式等。 撰写提示词时,可以设置提示词变量,即在提示词中通过添加占位符{{ }}标识,表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将
模型训练所需数据量与数据格式要求 盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1G
虽然微调可以在一定程度上提升领域能力,但有时候微调也无法解决所有问题。即使您的目标场景依赖垂域背景知识,微调也并非最佳方案,比如: 场景微调的数据量很少或者数据质量很差:微调对数据量和数据质量有很高的要求,需要使用高质量的数据进行模型训练。 垂域知识问答场景:通用模型本身已经具有在给定的一段或几段段落知识的场
为什么需要提示工程 模型生成结果优劣取决与模型能力及提示词质量。其中模型能力的更新需要准备大量的数据及消耗大量的计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。 “提示词撰写” 和“提示工程”有什么区别 提示词撰写实际上是构建一些问答对数据,用于
据中心为全国客户提供服务。因此,根据地理区域的不同将全国划分成不同的支持区域。 盘古大模型当前仅支持西南-贵阳一区域。 图1 盘古大模型服务区域 父主题: 模型能力与规格
IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。 调用API获取项目ID 项目ID
一份高质量的数据应具备以下几类特征: 数据与目标任务一致:微调数据应该与微调任务的目标和分布保持一致,反映出任务的实际要求。比如,现在需要微调一个情感分类的模型,模型只需要回复“消极”或者“积极”: 情感分类场景-典型低质量数据:数据中存在与目标任务不一致的样本。 {"context":
场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数据,如果目标任务本身属于某个领域(如金融、政务、法律、医疗、工业等),需要依赖很
盘古大模型(PanguLargeModels)是集数据管理、模型训练和模型部署于一体的一站式大模型开发与应用平台。平台支持大模型的定制开发,提供全生命周期工具链,帮助开发者高效构建与部署模型,企业可灵活选择适合的服务与产品,轻松实现模型与应用的开发。 产品介绍 立即使用 在线体验 图说ECS 成长地图 由浅入深,带您玩转盘古大模型
功能总览 功能总览 全部 数据工程套件 模型开发套件 应用开发套件 能力调测 应用百宝箱 数据工程套件 数据工程套件作为盘古大模型的重要组成部分,具备数据获取、清洗、配比和管理等功能。该套件能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。 通过提供自动化的质量检测
检测数据集质量 数据集创建成功后,平台将对数据集中的数据进行质量校验,并给出健康度评分、合规度评分与数据长度分布。 检测数据集质量 在“数据工程 > 数据管理”页面,选择“我的数据集”或者“训练数据集”页签。 单击数据集名称,进入数据集详情页,查看详细的数据质量。 其中,数据长度
当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:
约束与限制 受技术等多种因素制约,盘古大模型服务存在一些约束限制。 每个模型请求的最大Token数有所差异,详细请参见模型的基础信息。 模型所支持的训练数据量、数据格式要求请参见《用户指南》“准备盘古大模型训练数据集 > 模型训练所需数据量与数据格式要求”。
盘古大模型套件使用流程 盘古大模型套件平台是一款功能强大、集成度高的大模型开发与应用平台。该平台全面支持大模型的数据管理、清洗与配比,涵盖预训练与微调功能。此外,平台还提供了强大的模型部署、评估与调用功能,确保模型能够在生产环境中高效应用。平台支持提示词工程、AI助手及SDK开发
为什么微调后的模型,回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
成一个或多个预测的补全。它可以用来做文本生成、自动写作、代码补全等任务。 NLP-多轮对话 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 父主题: 使用前必读
性知识时,可能提供过时的回答。 当前,大模型对于私域数据的利用仍然面临一些挑战。私域数据是由特定企业或个人所拥有的数据,通常包含了领域特定的知识。将大模型与私域知识进行结合,将发挥巨大价值。私域知识从数据形态上又可以分为非结构化与结构化数据。对于非结构化数据,如文档,可以利用大模型+外挂检索库(如Elastic
为什么微调后的模型,回答总是在重复某一句或某几句话 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“