检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
in_13b.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> 示例: sh scripts/llama2/0_pl_pretrain_13b.sh localhost 1 0 等待模型载入 执行训练启动命令后,等待模型载
当前使用的操作系统及版本 当前推理业务的操作系统及版本,如:Ubuntu 22.04。 是否使用容器化运行业务,以及容器中OS版本,HostOS中是否有业务软件以及HostOS的类型和版本。 需要评估是否愿意迁移到华为云的通用OS。 - AI引擎及版本 当前引擎(TF/PT/LibTorch),是否接受切换MindSpore。
pip {command} --prefer-binary{index_url_line} --trusted-host github.com --trusted-host codeload.github.com/g' /home/ma-user/sdwebui/stable-di
--max-num-batched-tokens=4096 \ --tensor-parallel-size=1 \ --block-size=128 \ --host=0.0.0.0 \ --port=8080 \ --gpu-memory-utilization=0.9 \ --trust-remote-code
--max-num-batched-tokens=4096 \ --tensor-parallel-size=1 \ --block-size=128 \ --host=${docker_ip} \ --port=8080 \ --gpu-memory-utilization=0.9 \ --trust-remote-code
Notebook中进行测试: cd benchmark_tools python benchmark_parallel.py --backend vllm --host 127.0.0.1 --port 8080 --tokenizer /path/to/tokenizer --epochs 10 --parallel-num
自动学习和订阅算法有什么区别? 针对不同目标群体,ModelArts提供不同的AI开发方式。 如果您是新手,推荐您使用自动学习实现零代码模型开发。当您使用自动学习,系统会自动选择适合的算法和适合的参数进行模型训练。 如果您是AI开发进阶者,通过订阅算法进行模型训练有更多算法上的选择,并且您可以自定义训练所需的参数。
in_13b.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> 示例: sh scripts/llama2/0_pl_pretrain_13b.sh localhost 1 0 等待模型载入 执行训练启动命令后,等待模型载
/home/ma-user/.ssh/id_rsa* #收缩公私钥文件权限 chmod 600 /home/ma-user/etc/ssh_host_rsa_key* #收缩公私钥文件权限 sed -i "s/ma-user/#ma-user/g" /etc/sudoers
scripts/llama2/0_pl_lora_13b.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> sh scripts/llama2/0_pl_lora_13b.sh localhost 1 0 训练完成后,生成的权重文件保存路径为:/home/ma-
py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host 127.0.0.1 --port 8080 --tokenizer /path/to/tokenizer --epochs 5 \ --parallel-num
py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host 127.0.0.1 --port 8080 --tokenizer /path/to/tokenizer --epochs 5 \ --parallel-num
--max-num-batched-tokens=4096 \ --tensor-parallel-size=1 \ --block-size=128 \ --host=${docker_ip} \ --port=8080 \ --gpu-memory-utilization=0.9 \ --trust-remote-code
执行。 # 单机执行命令为:sh demo.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> sh demo.sh localhost 1 0 单机如需指定训练卡数训练可使用ASCEND_RT_VISIBLE_DEVICES
DCGM_EXPORTER_VERSION=3.1.7-3.1.4 && \ docker run -d --rm \ --gpus all \ --net host \ --cap-add SYS_ADMIN \ nvcr.io/nvidia/k8s/dcgm-exporter:${DC
在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。 父主题:
py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer --epochs
py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer --epochs
的实际使用时长计费,秒级计费,按小时结算。按需计费模式允许您根据实际业务需求灵活地调整资源使用,无需提前预置资源,从而降低预置过多或不足的风险。一般适用于资源需求波动的场景,可以即开即停。 表1列出了两种计费模式的区别。 表1 计费模式 计费模式 包年/包月 按需计费 付费方式 预付费
执行。 # 单机执行命令为:sh demo.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0> sh demo.sh localhost 1 0 单机如需指定训练卡数训练可使用ASCEND_RT_VISIBLE_DEVICES