检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
求或团队结构,自定义创建独立的工作空间。 每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目管理、部门运营或特定的研发需求,划分出多个工作空间,实现资产的精细化管理与有序调配,帮助用户高效地规划和分配任务,使团队协作更加高效。
1600个字符。 配置插件的配置信息,配置插件URL和请求方式等参数信息。配置完成后,单击“下一步”。 风险提示:自定义插件使用HTTP服务,或不增加鉴权方式可能存在安全风险。 表2 插件配置信息表 参数名称 说明 插件URL 插件服务的请求URL地址。 URL协议只支持HTTP和HTTPS。
数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 父主题: 大模型微调训练类问题
概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 父主题: 大模型微调训练类问题
数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。
Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。 使用推理SDK章节示例代码均以ak和sk保存在环境变量中来实现身份验证。
架构类型 算法所支持的结构类型,模型选择完成后,会自动适配架构类型。 安全护栏 选择模式 安全护栏保障模型调用安全。若关闭,推理服务可能会有违规风险,建议开启。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则,不可调整。 资源配置 实例数 设置部署模型时所需的实例数,单次部
提升模型性能:高质量的数据集直接影响模型的训练效果。通过准确的评估,用户能够确保数据集的高质量,进而提升模型的性能和精度。 减少数据问题带来的风险:数据中潜在的错误和缺陷可能导致模型训练不充分或效果不理想。通过数据评估,用户能够提前发现和解决这些问题,避免模型训练阶段出现数据问题。 灵活的评估标准:ModelArts
一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法
身份认证与访问控制 用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表
创建盘古NLP大模型SFT任务 场景描述 此示例演示了如何从头创建SFT(有监督微调)训练任务。通过该示例,您将了解以下内容: 如何将数据导入平台并进行数据加工、标注和评估操作。 如何创建SFT训练任务并配置训练参数,以提升文本理解和生成的质量。 如何执行模型的压缩和部署操作。 准备工作
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实
提升数据的准确性和一致性,为后续的模型训练提供更高质量、更有效的输入。数据加工不仅仅是对数据的简单处理,它还针对不同数据类型和业务场景进行有针对性的优化。 ModelArts Studio大模型开发平台提供了强大的数据加工功能,根据不同类型的数据集预置了多种加工算子,如数据提取、转换和过滤等。
从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技
提示词要素 指令:要求模型执行的具体任务或回答的问题。如:“写一篇关于勇士的小说”、“天空为什么是蓝色的?” 说明:对任务要求的补充说明。如:“有冒险、友情等元素”、“生成文本少于200字” 上下文:提供角色、示例、外部信息等,供大模型参考。 提示工程是什么 大模型生成文本的过程可视为
方式添加更多的组件,实现复杂业务流程的编排,从而快速构建Agent。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。 父主题: 创建与管理工作流