检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
调用说明 盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
变更计费模式 盘古大模型的模型订阅服务、数据托管服务、推理服务默认采用包周期计费,数据智算服务、数据通算服务、训练服务默认采用按需计费。 盘古大模型使用周期内不支持变更配置。
"caption":"图片对应的文本描述"} 数据集最大100万个文件,单文件最大10GB,整个数据集最大10TB,具体格式示例如下: 图片+QA对 图片支持tar,QA对支持jsonl 图片+QA对是指将一张图片和与之相关的问题及答案配对在一起,用于训练模型让其能够理解图片内容并回答与图片相关的问题。
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
发布训练后的科学计算大模型 科学计算大模型训练完成后,需要执行发布操作,操作步骤如下: 在模型训练列表页面选择训练完成的任务,单击训练任务名称进去详情页。 在“训练结果”页面,单击“发布”。 图1 训练结果 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为资产同步显示在“空间资产
"请用幼儿园老师的口吻回答问题,注意语气温和亲切,通过提问、引导、赞美等方式,激发学生的思维和想象力。" }, { "role": "user", "content": "介绍下长江,以及长江中典型的鱼类"
比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
Studio大模型开发平台首页。 在“我的空间”分页中,单击“创建空间”。 填写空间名称、描述,单击“确认”,完成空间的创建。 图1 创建空间 单击创建好的空间,进入ModelArts Studio大模型开发平台,平台支持数据工程、模型开发、Agent开发等功能。 如果用户具备多个空间的访问权限,可在页面左上角单击切换空间。
数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数
上线标注后的文本类数据集 数据集标注完成并且审核无问题后,需要对该数据集执行上线操作。上线后的数据集可以用于后续的数据评估、发布任务。 上线标注后的数据集步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
上线标注后的视频类数据集 数据集标注完成并且审核无问题后,需要对该数据集执行上线操作。上线后的数据集可以用于后续的数据评估、发布任务。 上线标注后的数据集步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单 算子分类 算子名称 算子描述 科学计算 气象预处理 将二进制格式的气象数据文件转换成结构化json数据。 父主题: 数据集加工算子介绍
理的各个环节都能紧密协作,快速响应不断变化的业务需求和技术要求。 平台支持的数据类型 ModelArts Studio大模型开发平台支持的数据类型见表1。 表1 平台支持的数据类型 数据类型 数据内容 数据文件格式要求 文本类 文档 支持txt、mobi、epub、docx、pdf,详见文本类数据集格式要求。
ModelArts Studio大模型开发平台为用户提供了多种规格的科学计算大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 盘古科学计算大模型规格 模型支持区域 模型名称 说明 西南-贵阳一 Pangu-AI4S-Ocean_24h-20241030
这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。
此版本是2024年10月发布的十亿级模型版本,支持128K序列长度在线推理。基于Snt9B3卡支持8卡推理部署,此模型版本仅支持预置模型版本,不支持SFT后模型版本做128K序列长度推理部署。 Pangu-NLP-N2-Base-20241030 - 此版本是2024年10月发布的百亿级模型版本
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0 引言”之前的内容,引言之前的内容与知识无关:[\s\S]{0,10000}0 引言 针对pdf的内容,去除“1.1Java简介”之前的与知识无关的内容:[\s\S]{0,10000}