检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
)打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色 根据人员的职能进行划分,使用TICS的用户主要可以分为以下两类。
Service)。可信智能计算服务TICS打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 在调用可信智能计算服务TICS
个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见的场景,TICS能够很方便的支撑联盟和计算节点升级和回滚。回滚也称为回退,即当发现升级出现问题时,让联盟和计算节点自动回滚到
创建并运行隐私求交作业 企业A单击“作业管理 > 隐私求交 > 创建”,依次填写作业名称、选择需要求交的数据集和对应的求交列、选择算法协议及各种参数,再单击“保存并执行”即可发起一次隐私求交查询。 父主题: 隐私求交黑名单共享场景
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
给计算节点。 必须确保互通的ip和端口: KrbServer的ip,以及tcp端口21730 和udp端口(21732,21731) zookeeper的ip和端口(2181) Hive-server的ip和端口(10000) MRS Manager的TCP端口(9022) 参考如下:
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
进入TICS服务控制台。 在计算节点管理中,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点 登录计算节点后,在下图所述位置新建连接器。 图2 新建连接器 输入正确的连接信息,建立数据源和计算节点之间的安全连接。 图3 输入信息 建立完成后,连接器显示正常说明连接正常。
为防止资源滥用,平台限定了各服务资源的配额,对用户的资源数量和容量做了限制。如您最多可以创建多少台弹性云服务器、多少块云硬盘。 如果当前资源配额限制无法满足使用需要,您可以申请扩大配额。 怎样查看我的配额? 登录管理控制台。 单击管理控制台左上角的,选择区域和项目。 在页面右上角,选择“资源 > 我的配额”。
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS多方安全计算进行联合样本分布统计
发布数据集 企业A和大数据厂商B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集。 企业A的数据集如下: 大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS可信联邦学习进行联邦建模
在数据合约页面单击“我创建的”,单击“更多 > 履约记录”。 图1 履约记录 在弹出的对话框展示履约记录的内容。 图2 查看履约记录详情 作为合约的参与一方,可以查看合约从创建、签署以及合约执行(文件交换),以及文件解密的整个过程。 合约双方都可以查看整个合约的履约过程。 父主题: 可信数据交换
在“计算节点管理”页面,查找需要发布数据的计算节点名称,单击“计算节点名称”进入计算节点详情页。 图1 选择计算节点 在“计算节点详情”页,单击“前往计算节点”,在登录页正确输入部署计算节点时设置的“登录用户名”和“密码”。 图2 前往计算节点 在“数据管理”页签找到待发布的数据名称,单击“发布”,弹出发布数据集选择框。
”、“空间名称”、“空间ID”、“证书密码”等。 p12文件:计算节点的密钥文件。 jks文件:CA的“证书”,密钥和证书保证了空间下的用户,部署的计算节点能够数据交互,参与计算。同时,也隔离了不同空间之间的数据访问。 图3 下载计算节点配置 单击页面左侧“计算节点管理”,进入计算节点管理页面。在操作列单击“更多
value of the uniqueID…),则检查自己的最终输出结果中,是否有和自己做Join连接的ID完全对应的字段。例如输出了名字,而名字可以倒推身份证,因此这种计算会被认为是风险行为,拒绝输出结果。 如果错误提示是可能泄露的敏感数据(may disclose the value
仅当实时隐匿查询作业开启“作业是否可被授权执行”开关并审批通过后,发起方可以进行作业授权,参考创建作业和审批实时隐匿查询作业。 作业授权 在实时隐匿查询作业列表页面,查找待授权的作业,单击“更多>授权”。 图1 授权作业 在弹出的窗口中,选择需要授权的执行节点。授权成功后,被授权节点可以直接执行作业并获取作业结果。 图2
为保证正常创建TICS服务,需要先设置服务委托。 前提条件 服务授权需要主账号或者admin用户组中的子账号进行操作。 授权委托需查看IAM委托列表,如果存在名为tics_admin_trust的委托和tics_role_trust的权限,需要先删除。 服务授权操作 进入TICS服务控制台,为保证正常创建TICS服务,需要先设置服务委托。
在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色 根据人员的职能进行划分,使用TICS的用户主要可以分为以下两类。 组织方 面向熟悉业务并具有管理、决策、审核权限的管理人员。组织方具有TICS的所有权限,包括创建空间、邀请空
可以看出企业A提供的预测数据集中有部分用户被模型预测成了高价值的客户,后续企业A可以对这一部分用户进行定向精准营销,缩小营销广告的投放范围,减少了营销的成本。 当两方都提供特征时,预测结果分为对齐id文件(只有一列id)和预测结果文件(包括预测结果标签、0的概率、1的概率),两个文件的行数相等且每一行相互对应。
根据统计结果,双方可能会发现存在以下两个问题: 碰撞后的数据总数比较小。 碰撞后的数据分布不太均衡,负样本的比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。 至此联邦建模的数据准备阶段完成,接下来就是使用准备好的数据进行联邦建模。 父主题: