检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署服务 评估模板应用后,就可以部署模板应用至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的模板样式的图片。 前提条件 已在文字识别套件控制台选择“通用单模板工作流”新建应用,并完成评估模板步骤,详情请见评估应用。 操作步骤 在“应用开发>部署”页面完
不填写时,默认提取全部字段。 如果需要多个提取规则,单击新增提取规则。提取时按从上到下优先级规则提取,选择第一个非空的提取内容作为提取后的内容。 后处理 根据实际情况,对经过“提取”后的文字进行“后处理”。 您也可以在“应用开发>框选识别区”过程中创建新的字段类型,详情请见创建新字段类型。 父主题: 通用单模板工作流
部署服务 评估模板应用后,就可以部署多模板应用至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的图片属于哪种模板以及识别图片中的文字。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”新建应用,并完成评估模板步骤,详情请见评估应用。 操作步骤 在
并查看训练的模型准确率和误差的变化。 训练模型 评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 评估结果包括一些常用的指标,如精准率、召回率、F1值等,并且同时启动一个在线测试服务,供您模拟在线测试,帮助您有效评估模型,最终获得一个满意的模型。 评估模型
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个数据以上,为了训练出效果较好的模型,
参照字段是文字内容、位置固定不变的文本框区域。 参照字段为单行文本框,不可以框选竖版文字或跨行框选。 框选参照字段个数须建议大于4个,越多越好,并尽量分散在图片的四周。 参考字段尽量沿着文字边缘框选,精确框住对应文本行为佳。 核对右侧“框选参照字段”中的参照字段是否与框选的参照字段一致。 框选
自然语言处理套件提供了通用文本分类工作流,您可以通过预置的工作流,自主上传训练数据,训练高精度的文本预测分类模型,适配不同行业场景的业务数据,快速获得定制服务。 图1 使用预置工作流开发应用 表1 使用预置工作流开发应用流程 流程 说明 详细指导 选择自然语言处理套件 根据您的实际使用需求选择自然语言处理套
换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。 基本概念 参照字段为模板图片和待识别图片中的公共文字部分,所有需要识别的图片中都要包含参照字段,且位置必须固定。 套件提供了自
删除技能 如果已创建的应用不再使用,您可以删除应用释放资源。 操作步骤 登录华为HiLens管理控制台,在左侧导航栏选择“技能开发>技能管理”。 默认进入“基础技能”页签。 单击“可训练技能”,切换至“可训练技能”页签。 选择技能单击操作列的“删除”,确认信息后单击“确定”,删除技能。
在商品识别场景下,如果上传的数据包含未标注数据,您需要创建SKU,即商品各类单品的图片,方便后续针对数据集中的数据进行自动标注。 如果数据集是已标注数据,您可以选择不创建SKU,直接执行下一步。 创建SKU 标注数据 针对已经选择的数据和SKU,在应用开发的“数据标注”页面,ModelArts
相是指成分和组织均匀统一的物质部分,金属材料中,一般除了基体相外,还会存在许多的第二相。而第二相对整个金属材料的影响也是巨大的。在钢铁或其下游企业,常需要对钢铁显微成像的金相图片第二相面积含量进行测定。ModelArts Pro提供第二相面积含量测定工作流,能快速准确的返回第二相面积含量测定结果。
通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的多模板样式的图片。 部署服务 父主题:
行业场景的业务数据,快速获得定制服务。 适用场景 知识图谱、文本理解、智能问答、舆情分析等实体抽取场景。 优势 针对多场景领域提供预训练模型,支持抽取文本中的实体,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。
针对场景领域提供预训练模型,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。 通用实体抽取工作流 功能介绍 支持自主上传文本数据,构建高精度实体抽取模型,适配不同行业场景的业务数据,快速获得定制服务。 适用场景 知
理逻辑”快速处理图片,也可以按左上角操作指标调整图片。 图1 定义预处理 右侧“选择预处理逻辑”区域勾选对应操作,当前仅支持“自动旋转”操作,系统自动旋转文字方向不正确的图片,保持图片中的文字方向正确。 单击预处理区域左上方的操作图标,调整模板图片的大小、方向等。 :单击图标重置
统自动旋转文字方向不正确的图片,保持图片中的文字方向正确。 单击预处理区域左上方的操作图标,调整模板图片的大小、方向等。 :单击图标重置图片为初始状态,即未进行任何处理的状态。 :单击图标,在“图片裁剪”窗口调整图片裁剪范围,然后单击“裁剪”,调整图片的大小。 :单击图标,在“图
模型训练的数据,上传至OBS中。 准备数据 选择数据 在使用通用文本分类工作流开发应用时,您需要新建或导入训练数据集,后续训练模型操作是基于您选择的训练数据集。 选择数据 标注数据(可选) 由于模型训练过程需要大量有标签的数据,如果开发应用时,上传的训练数据集是未标注的,需要对数据集中的数据进行标注。
对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。 如果需要多个提取规则,单击新增提取规则。提取时按从上到下优先级规则提取,选择第一个非空的提取内容作为提取后的内容。 后处理 根据实际情况,对经过“提取”后的文字进行“后处理”。
对经过“预处理”的文字进行关键字符提取。 在输入框中填写查找关键字符的正则表达式。 不填写时,默认提取全部字段。 如果需要多个提取规则,单击新增提取规则。提取时按从上到下优先级规则提取,选择第一个非空的提取内容作为提取后的内容。 后处理 根据实际情况,对经过“提取”后的文字进行“后处理”。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 评估模型 部署服务 模型准备完成后,您可以部署服务,用于分类自己所上传的文字内容,也可直接调用对应的API。 部署服务 父主题: 多语种文本分类工作流