检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模模型时,可以通过设置这个参数来控制日志的输出。 --prompt-type:需要指定使用模型的template。已支持的系列模型可查看:文档更新内容。 输出数据预处理结果路径: 训练完成后,以 llama2-13b 为例,输出数据路径为:/home/ma-user/work/l
e格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下: df -h Step4 制作推理镜像 解压AscendClo
说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 获取模型权重文件 表2 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b
inting true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内存使用,特别是在训练大型模型时,但同时影响性能。True表示关闭重计算功能。 include_tokens_per_second
说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 获取模型权重文件 表2 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b
e格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 3.权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下: df -h 步骤四 制作推理镜像 解压AscendClo
可以有多个,表示不同的授权项。 图1 策略结构 策略参数 下面介绍策略参数详细说明。了解策略参数后,您可以根据场景自定义策略。具体可以参考文档自定义策略使用样例。 表3 策略参数说明 参数 含义 值 Version 策略的版本。 1.1:代表基于策略的访问控制。 Statement:策略的授权语句
S中 job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务部署的IP。 --port:推理服务端口8080。 --tokenizer:tokenize
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai、openai-chat等。本文档使用的推理接口是vllm,而llava多模态推理接口是openai-chat。 --host ${docker_ip}:服务部署的IP,$
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务部署的IP。 --port:推理服务端口8080。 --tokenizer:tokenize
IMS、DEW授权,也不影响原有专属资源池的使用。 目前ModelArts Lite功能是“受邀开通”状态,作为企业用户您可以咨询您对口的技术支持开通或提工单咨询。 父主题: 配置ModelArts Standard访问授权
e格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下: df -h Step4 制作推理镜像 解压AscendClo
e格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 3.权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下: df -h 步骤四 制作推理镜像 解压AscendClo
env来构建环境,也可以通过pip install、conda install等方式安装conda环境依赖。 容器镜像的大小建议小于15G,详细的自定义镜像规范要求请参见训练作业自定义镜像规范。 建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务部署的IP。 --port:推理服务端口8080。 --tokenizer:tokenize
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。
参见推理基础镜像列表。 推荐将旧版镜像切换为统一镜像,旧版镜像后续将会逐渐下线。 待下线的基本镜像不再维护。 统一镜像Runtime的命名规范:<AI引擎名字及版本> - <硬件及版本:cpu或cuda或cann> - <python版本> - <操作系统版本> - <CPU架构>