检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
写作示例 意图匹配 面试问题生成 父主题: 提示词写作实践
应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
面试问题生成 应用场景说明:将面试者的简历信息输入给大模型,基于简历生成面试问题,用于辅助人工面试或实现自动化面试。 父主题: 写作示例
提示词写作实践 提示工程介绍 常用方法论 进阶技巧 写作示例
文档摘要 基于已有的知识库,进行摘要总结。有stuff、refine、map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型处理,适合文档较少的场景。 from pangukitsappdev.api.embeddings.factory import
文档问答 基于已有的知识库进行回答,包括stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型回答,适用于文档较少的场景。 import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs;
文档摘要 基于已有的知识库进行摘要总结,包括stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型处理,适用于文档较少的场景。 import com.huaweicloud.pangu.dev.sdk.api.llms.LLMs;
进阶技巧 设置背景及人设 理解底层任务 CoT思维链 考察模型逻辑 父主题: 提示词写作实践
常用方法论 打基础 补说明 搭结构 排顺序 补预设 父主题: 提示词写作实践
文档问答 基于已有的知识库进行回答。有stuff、refine和map-reduce策略。 Stuff:将所有文档直接填充到prompt中,提给模型回答,适合文档较少的场景。 from pangukitsappdev.api.embeddings.factory import Embeddings
需要站在模型的角度理解相关任务的真实底层任务,并清晰描述任务要求。 例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。
什么是好的提示词 好的提示词内容明确且具体,能够指导语言模型稳定输出有效、无害的文本,帮助业务高效完成任务和达成任务目标。 父主题: 提示词写作实践
CoT思维链 对于复杂推理问题(如数学问题或逻辑推理),通过给大模型示例或鼓励大模型解释推理过程,可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等
补说明 对任务进行补充说明,如补充任务要求、规范输出的格式等。将想要的逻辑梳理表达出来,会让生成效果更加符合预期。说明需要逻辑清晰、无歧义。 设计任务要求 要求分点列举: 要求较多时需要分点列举,可以使用首先\然后,或1\2\3序号分点提出要求。每个要求步骤之间最好换行(\n)分
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比如“以上是金融领域的新闻”、“以上是一篇xx领域的xxx文档”。 例如,“结合金融领域相关知识,生成一份调研报告大纲,报告主题是区块链洞察”、“以上是某理财app用户反馈的问题,请提供解决方案。” 人设:
搭结构 提示词的结构需要尽可能直观,不要将指令、上下文、说明等内容放在一行输入,适当的换行将提示词的内容结构拆分体现出来。一个结构清晰的提示词输入,能够让模型更好地理解您的意图。 另外,上下文可以用'''xxx'''三引号区隔开,以防止指令冲突。在如下的闭卷问答任务中,文本中部分
好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可以使用“根据以下信息,写一封商务电子邮件。{邮件内容描述}”,摘要任务可以使用“请根据以下内容生成摘要。\n{文本内容}”。\n为换行符。
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数
排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,将关键信息放在结尾处,模型输出效果更好。不同任务的关键信息不同,若需要模型生成的内容更具创意性,关键信息需要为内容描述;需要模型严格遵循指令进行回复的,关键信息为指令及说明。 父主题: 常用方法论