检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
昇腾性能自动诊断工具使用说明 昇腾性能自动诊断工具msprof-analyze已发布至官方pypi源中,支持在任意环境上手动安装msprof-analyze分析调优工具,执行命令“pip install msprof-analyze”即可完成安装。 本文旨在帮助您了解msprof
准备预测分析数据 使用ModelArts自动学习构建预测分析模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域,例如OBS桶区域为“北京四”时,必须保证ModelArts管理控制台区域也在“北京四”区域,否则会导致无法获取到相关数据。 数据集要求
} 相关案例 更多权限配置案例如下,根据实际需要参考。 给子用户配置开发环境基本使用权限 给子用户配置训练作业基本使用权限 给子用户配置部署上线基本使用权限 管理员和开发者权限分离 限制用户使用公共资源池 给子用户配置文件夹级的SFS Turbo访问权限 查看所有子账号的Notebook实例
s数据集。 “标签列” 可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “
上传数据至OBS(首次使用时需要) 前提条件 已经在OBS上创建好普通OBS桶,请参见创建普通OBS桶。 已经安装obsutil,请参考下载和安装obsutil。 参考线下容器镜像构建及调试章节,构建容器镜像并调试,镜像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。
在Lite Cluster资源池上使用Snt9B完成推理任务 场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。
使用ModelArts时提示“权限不足”,如何解决? 当您使用ModelArts时如果提示权限不足,请您按照如下指导对相关服务和用户进行授权,并对用户权限进行检查操作。 本案例中以OBS权限不足为例,介绍如何为用户授予OBS服务权限。其它权限不足的场景也可以参考本案例操作,只是授
使用ModelArts时提示“权限不足”,如何解决? 当您使用ModelArts时如果提示权限不足,请您按照如下指导对相关服务和用户进行授权,并对用户权限进行检查操作。 本案例中以OBS权限不足为例,介绍如何为用户授予OBS服务权限。其它权限不足的场景也可以参考本案例操作,只是授
准备物体检测数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 数据集要求 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。
ssh或者downloads;Mac/Linux: Users/{{user}}/.ssh或者downloads)目录下根据密钥名称查找密钥文件。 如果找到则直接使用该密钥打开新窗口并尝试连接远程实例,此时无需选择密钥。 图7 远程连接Notebook实例 如果未找到会弹出选择框,请根据提示选择正确的密钥。
MoXing如何访问文件夹并使用get_size读取文件夹大小? 问题现象 使用MoXing无法访问文件夹。 使用MoXing的“get_size”读取文件夹大小,显示为0。 原因分析 使用MoXing访问文件夹,需添加参数:“recursive=True”,默认为False。 处理方法
ache”目录,用户可以使用此目录来储存临时文件。 当前开发环境的Cache盘使用时,没有容量告警,在使用时很容易超过限制,并直接重启Notebook实例。重启后多种配置重置,会导致用户数据丢弃,环境丢失,造成很不好的使用体验。因此需要提供cache盘使用情况的监控和告警,并将数据上报至AOM平台。
分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公
将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
Notebook中使用Conda安装Keras 2.3.1报错 问题现象 使用Conda安装Keras 2.3.1版本报错。 原因分析 可能是Conda网络不通,请使用pip install命令安装。 解决方法 执行 !pip install keras==2.3.1命令安装Keras。
'obs://bucket_name/sub_dir_0') 使用OBS或ModelArts SDK将OBS中的文件下载到本地。 方式一:使用OBS进行下载 在OBS中,可以将样例中的“obs_file.txt”下载到本地。如果您的数据较多,推荐OBS Browser+下载数据或文件夹。使用OBS下载文件的操作指导,请参见下载文件。
Code的Terminal中使用ModelArts SDK完成数据上传至OBS。首先在本地VS Code中单击上方菜单栏的“Terminal”。在Terminal中输入python并回车,进入python环境。 python 然后在本地VS Code的Terminal中使用ModelArts
“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现物体检测