检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用前必读 概述 基本概念 调用说明 项目ID 终端节点Endpoint 计算节点所在虚机的IP:Port
关。 合作方 合作方使用数据源计算节点模块实现自主可控的数据源注册、隐私策略(脱敏、加密、水印)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 TICS使用流程简介 TICS典型的端到端开发流程如下图所示: 图1 TICS使用流程
申请使用数据 数据需求方公司B在自己的计算节点页面上可以查看数据目录,找到数据拥有方公司A创建并发布的数据。 图1 创建数据申请 对数据集单击“申请使用”,在弹窗中填写需要使用的字段和访问需求,保存后可以提交审批,由公司A审核。 访问需求包括: 访问截止时间:设置访问的时间限制,
的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 label float
关。 合作方 合作方使用数据源计算节点模块实现自主可控的数据源注册、隐私策略(脱敏、加密、水印)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 TICS使用流程简介 TICS典型的端到端开发流程如下图所示: 图1 TICS使用流程 父主题: 快速入门
使用场景 多方安全计算场景 纵向联邦建模场景 隐私求交黑名单共享场景 实时隐匿查询场景 可信数据交换场景 横向联邦学习场景
027350049,1.293868423 其中为了保证数据安全,企业A和大数据厂商B通过讨论决定使用hash过后的手机号作为已有数据的唯一标识id字段,并将唯一标识作为数据对齐的依据。 父主题: 使用TICS多方安全计算进行联合样本分布统计
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
授权IAM用户使用TICS 如果您需要对您所拥有的TICS进行精细的权限管理,您可以使用统一身份认证服务(Identity and Access Management,简称IAM)。通过IAM,您可以: 根据企业的业务组织,在您的华为账号中,给企业中不同职能部门的员工创建IAM用
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
f2特征的iv值中等,适合作为模型的训练特征。 根据计算得出的iv值,企业A调整了训练使用的特征,没有选用双方提供的特征全集,去掉了部分iv值较低的特征,减少了无用的计算消耗。 父主题: 使用TICS可信联邦学习进行联邦建模
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。 父主题: 使用TICS联邦预测进行新数据离线预测
等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用TICS联邦预测进行新数据离线预测
使用TICS多方安全计算进行联合样本分布统计 场景描述 准备数据 发布数据集 创建样本分布统计作业 执行样本分布联合统计 数据优化 父主题: 纵向联邦建模场景
的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。
自己的计算节点上,通过“数据管理”模块创建用于预测的数据集。 企业A预测数据集如下: 大数据厂商B仍使用训练时的提供的全量数据作为预测数据集,没有发布新的数据集。 父主题: 使用TICS联邦预测进行新数据离线预测