检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NV
型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NV
持的模型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
型列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NV
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。
像制作。 在您使用自定义镜像功能时,ModelArts可能需要访问您的容器镜像服务SWR、对象存储服务OBS等依赖服务,如果没有授权,这些功能将不能正常使用。建议您使用委托授权功能,将依赖服务操作权限委托给ModelArts服务,让ModelArts以您的身份使用依赖服务,代替您
https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
使用Cloud Shell调试生产训练作业 ModelArts Standard提供了Cloud Shell,可以登录运行中的容器,用于调试生产环境的训练作业。 约束限制 仅专属资源池支持使用Cloud Shell登录训练容器,且训练作业必须处于“运行中”状态。 前提条件:给子账号配置允许使用Cloud
可见。不同的项目中查看不到。 Step3 在TMS中根据资源类型查询ModelArts资源使用情况 登录TMS控制台,在资源标签页面根据资源类型和资源标签查询指定区域的资源任务。 区域:使用华为云的具体Region,区域概念请参见什么是区域、可用区?。 资源类型:ModelArts支持查询的资源类型如表1所示。
执行convert_checkpoint.py脚本进行权重转换生成量化系数。 使用tensorRT量化工具进行模型量化。 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
)下均可以使用。目前,提供的MoXing Framework功能中主要包含操作OBS组件,即下文中描述的mox.file接口。 Moxing主要使用场景为提升从OBS读取和下载数据的易用性,适配对象为OBS对象桶,对于OBS并行文件系统部分接口可能存在问题,不建议使用。生产业务代码开发建议直接调用OBS
者选一项即可。 常用框架指使用ModelArts训练管理中支持的常用AI引擎,当前支持的引擎列表请参见ModelArts支持的预置镜像列表。 如果您使用的AI引擎为支持列表之外的,建议使用自定义镜像的方式创建训练作业。 AI Engine 选择代码使用的AI引擎及其版本。支持的A
码存储路径选择界面,单击“使用OBS”或“使用SFS”,填写OBS或SFS路径,单击“确定”。选择此路径后,会自动同步在“高级配置>中转目录”,也可单击“稍后决定”直接跳过。 线下开发:代码在本地,将本地代码传到OBS,然后通过OBS传至云上或直接使用SFS盘存储的代码。 线上开发:代码在云上,通过SSH连接容器。