检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备好密钥对文件。 密钥对在用户第一次创建时,自动下载,之后使用相同的密钥时不会再有下载界面(用户一定要保存好),或者每次都使用新的密钥对。 Step1 安装SSH工具 下载并安装SSH远程连接工具,以PuTTY为例,下载链接。 Step2 使用puttygen将密钥对.pem文件转成.ppk文件
通过PyCharm远程使用Notebook实例 使用PyCharm Toolkit插件连接Notebook 使用PyCharm手动连接Notebook 使用PyCharm上传数据至Notebook 父主题: 使用Notebook进行AI开发调试
径。 检查使用的资源是否为CPU,CPU的“/cache”与代码目录共用10G,可能是空间不足导致,可在代码中使用如下命令查看磁盘大小。 os.system('df -hT') 磁盘空间满足,请执行5。 磁盘空间不足,请您使用GPU资源。 如果是在Notebook使用MoXing
当您需要使用集群资源时,可以使用kubectl工具或k8s API来下发作业。此外,ModelArts还提供了扩缩容、驱动升级等功能,方便您对集群资源进行管理。 图2 使用流程 推荐您根据以下使用流程对Lite Cluster进行使用。 资源开通:您需要开通资源后才可使用Lite
在JupyterLab使用Git克隆代码仓 在JupyterLab中使用Git插件可以克隆GitHub开源代码仓库,快速查看及编辑内容,并提交修改后的内容。 前提条件 Notebook处于运行中状态。 打开JupyterLab的git插件 在Notebook列表中,选择一个实例,
re引擎的AI模型。具体操作流程如图1 使用JupyterLab在线开发调试代码所示。 图1 使用JupyterLab在线开发调试代码 操作步骤 创建Notebook实例。 在ModelArts控制台创建一个Notebook实例,选择要使用的AI框架。具体参见创建Notebook实例。
练和推理工作中的需求。 本文旨在帮助您了解Lite Server的基本使用流程,帮助您快速上手,使用流程包含以下步骤。 图1 使用流程 资源开通 由于Server为一台裸金属服务器,因此需要先购买资源后才能使用。 首先请联系客户经理确认Server资源方案,部分规格为受限规格,因此需要申请开通您所需的资源规格。
使用Notebook进行代码调试 背景信息 Notebook使用涉及到计费,具体收费项如下: 处于“运行中”状态的Notebook,会消耗资源,产生费用。根据您选择的资源不同,收费标准不同,价格详情请参见产品价格详情。当您不需要使用Notebook时,建议停止Notebook,避免产生不必要的费用。
使用Cloud Shell登录训练容器 使用场景 允许用户使用ModelArts控制台提供的Cloud Shell登录运行中的训练容器。 约束限制 仅专属资源池支持使用Cloud Shell,且训练作业必须处于“运行中”状态。 前提条件:给子账号配置允许使用Cloud Shell的权限
使用PyCharm Toolkit提交训练作业报错NoSuchKey 问题现象 使用PyCharm Toolkit提交训练作业时,训练作业详情页的“日志”页签存在报错“errorCode:NoSuchKey”。 原因分析 检查配置后发现,是镜像版本太低,旧版的镜像与当前训练作业不兼容。
Lite Cluster资源使用 在Lite Cluster资源池上使用Snt9B完成分布式训练任务 在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 在Lite Cluster资源池上使用Snt9B完成推理任务
Lite Server资源使用 LLM/AIGC/数字人基于Server适配NPU的训练推理指导 GPT-2基于Server适配PyTorch GPU的训练推理指导
使用Notebook进行代码调试 背景信息 Notebook使用涉及到计费,具体收费项如下: 处于“运行中”状态的Notebook,会消耗资源,产生费用。根据您选择的资源不同,收费标准不同,价格详情请参见产品价格详情。当您不需要使用Notebook时,建议停止Notebook,避免产生不必要的费用。
准备文本分类数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 数据集要求 文件格式要求为txt或者csv,文件大小不能超过8MB。 以换行符作为分隔符,每行数据代表一个标注对象。 文本分类目前只支持中文。
势以及训练中使用到的数据信息。TensorBoard相关概念请参考TensorBoard官网。 TensorBoard可视化训练作业,当前仅支持基于TensorFlow、PyTorch版本镜像,CPU/GPU规格的资源类型。请根据实际局点支持的镜像和资源规格选择使用。 前提条件
配置ModelArts基本使用权限 场景描述 Step1 创建用户组并加入用户 Step2 为用户配置云服务使用权限 Step3 为用户配置ModelArts的委托访问授权 Step4 测试用户权限 父主题: 典型场景配置实践
前提条件 使用MindSpore引擎编写训练脚本时,为了保证训练结果中输出Summary文件,您需要在脚本中添加收集Summary相关代码。 将数据记录到Summary日志文件中的具体方式请参考收集Summary数据。 注意事项 在开发环境跑训练任务,在开发环境使用MindIn
通过VS Code远程使用Notebook实例 VS Code连接Notebook方式介绍 安装VS Code软件 VS Code一键连接Notebook VS Code ToolKit连接Notebook VS Code手动连接Notebook 在VS Code中上传下载文件 父主题:
使用自动分组智能标注作业 为了提升智能标注算法精度,可以均衡标注多个类别,有助于提升智能标注算法精度。ModelArts内置了分组算法,您可以针对您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发