检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分布式改造点注释掉后即可进行单节点单卡训练。 训练代码中包含三部分入参,分别为训练基础参数、分布式参数和数据相关参数。其中分布式参数由平台自动入参,无需自行定义。数据相关参数中的custom_data表示是否使用自定义数据进行训练,该参数为“true”时使用基于torch自定义的随机数据进行训练和验证。
填写Notebook基本信息,包含名称、描述、是否自动停止,详细参数请参见表1。 表1 基本信息的参数描述 参数名称 说明 “名称” Notebook的名称。只能包含数字、大小写字母、下划线和中划线,长度不能大于64位且不能为空。 “描述” 对Notebook的简要描述。 “自动停止” 默认开启,且默认值
作为AI应用页签的背景图展示在AI应用列表。建议使用16:9的图片,且大小不超过7MB。 如果未上传图片,AI Gallery会为AI应用自动生成封面。 应用描述 否 输入AI应用的功能介绍,AI应用创建后,将展示在AI应用页签上,方便其他用户了解与使用。 支持0~100个字符。
源上执行管理命令。ma-cli支持用户在ModelArts Notebook及线下虚拟机中与云端服务交互,使用ma-cli命令可以实现命令自动补全、鉴权、镜像构建、提交ModelArts训练作业、提交DLI Spark作业、OBS数据复制等,具体参见ModelArts CLI命令参考。
tasks:评测数据集任务,比如openllm。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度,默认使用auto,代表自动选择batch大小。 output_path:结果保存路径。 使用lm-eval,比如加载非量化或者awq量化,llama3.2-1b模型的权重,参考命令:
tasks:评测数据集任务,比如openllm。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度,默认使用auto,代表自动选择batch大小。 output_path:结果保存路径。 使用lm-eval,比如加载非量化或者awq量化,llama3.2-1b模型的权重,参考命令:
tasks:评测数据集任务,比如openllm。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度,默认使用auto,代表自动选择batch大小。 output_path:结果保存路径。 使用lm-eval,比如加载非量化或者awq量化,llama3.2-1b模型的权重,参考命令:
ascend-1980 # 保持不动 data: #data内容保持不动,初始化完成,会被volcano插件自动修改 jobstart_hccl.json: | { "status":"initializing" }
str、Placeholder model_version 模型的版本,格式需为“数值.数值.数值”,其中数值为1-2位正整数。该字段不填时,版本号自动增加。 注意: 版本不可以出现例如01.01.01等以0开头的版本号形式。 否 str、Placeholder runtime 模型运行时
修改封面图和二级标题 在发布的资产详情页面,单击右侧的“编辑”,选择上传新的封面图,为资产编辑独特的主副标题。 编辑完成之后单击“保存”,封面图和二级标题内容自动同步,您可以直接在资产详情页查看修改结果。 图4 修改封面图和二级标题 编辑标签 单击标签右侧的出现标签编辑框,在下拉框中勾选该资产对应的标签。
UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 父主题: 模型管理
bleach==1.4.3 click==6.6 依赖包为whl包时 如果训练后台不支持下载开源安装包或者使用用户编译的whl包时,由于系统无法自动下载并安装,因此需要在“代码目录”放置此whl包,同时创建一个命名为“pip-requirements.txt”的文件,并且在文件中指定此whl包的包名。依赖包必须为“
ModelArts为用户提供了标注数据的能力: 人工标注:用户创建单人标注作业,对数据进行手工标注。 智能标注:在标注一定量的数据情况下,用户可以通过启动智能标注任务对数据进行自动标注,提高标注的效率。 团队标注:对于大批量的数据,用户可以通过创建团队标注作业,进行多人协同标注。 人工标注 对于不同类型的数据,用户可
置”页签,单击“添加数据存储”,设置挂载参数。 设置本地挂载目录,在“/data/”目录下输入一个文件夹名称,例如:demo。挂载时,后台自动会在Notebook容器的“/data/”目录下创建该文件夹,用来挂载OBS文件系统。 选择存放OBS并行文件系统下的文件夹,单击“确定”。
tasks:评测数据集任务,比如openllm。 batch_size:输入的batch_size大小,不影响精度,只影响得到结果速度,默认使用auto,代表自动选择batch大小。 output_path:结果保存路径。 使用lm-eval,比如加载非量化或者awq量化,llama3.2-1b模型的权重,参考命令:
并行文件系统,并确保OBS并行文件系统与ModelArts在同一区域。在Notebook中启动MindInsight时,Notebook会自动从挂载的OBS并行文件系统目录中读取Summary数据。 Step3 启动MindInsight 在开发环境的JupyterLab中打开MindInsight。
并行文件系统,并确保OBS并行文件系统与ModelArts在同一区域。在Notebook中启动TensorBoard时,Notebook会自动从挂载的OBS并行文件系统目录中读取Summary数据。 Step3 启动TensorBoard 在开发环境的JupyterLab中打开TensorBoard。
“数据增强”表示通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/processor-tasks
则无需填写。 autosearch_config_path String 自动化搜索作业的yaml配置路径,需要提供一个OBS路径。 autosearch_framework_path String 自动化搜索作业的框架代码目录,需要提供一个OBS路径。 command String
source_job_version String 来源训练作业的版本。 source_type String 模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型