内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 读书笔记:深度学习(1)

    欢迎来到深度学习的新世界本篇文章开始写一个关于深度学习的系列笔记,主要围绕《深度学习》这本书展开1.《深度学习》这本书为什么值得读?原因之一:作者是科技大咖,跨界牛人是深度学习发展的亲历者。名字叫做Terrence J. Sejnowski ,1947年出生,是普林斯顿大学的博士

    作者: 技术火炬手
    发表时间: 2019-02-26 17:48:04
    10155
    0
  • 基于深度学习的AI

    基于深度学习的AI分析是指使用深度神经网络等深度学习模型来进行数据分析和处理的技术。深度学习模型可以通过自动学习输入数据的特征和规律,从而实现对数据的高级分析和预测。以下是一些基于深度学习的AI分析技术: 图像分类:图像分类是指将输入图像分为不同的类别。基于深度学习的图像分类技术

    作者: 8181暴风雪
    发表时间: 2024-11-30 14:40:52
    91
    0
  • 深度学习之“深度”

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 深度学习:主流框架和编程实战》——1.2.2 基于统计的深度学习技术

    theory)可知,对于任意的非线性函数一定可以找到一个深度学习网络来对其进行表示,但是“可表示”并不代表“可学习”,因此需要进一步了解深度学习的样本复杂度,即需要多少训练样本才能得到一个足够好的深度学习模型。这些问题都有待于从理论层面进行突破,统计学对深度学习的进一步发展有着十分重要的意义。

    作者: 华章计算机
    发表时间: 2019-06-04 19:27:58
    5903
    0
  • 深度学习:主流框架和编程实战》——1.2 统计学与深度学习

    1 统计学与深度学习的关系深度学习作为机器学习中重要的分支,因此与统计学同样具有密不可分的关系。通常可以将统计学分为两大类,分别为用于组织、累加和描述数据中信息的描述统计学和使用抽样数据来推断总体的推断统计学。深度学习则是通过大量的样本数据学习——总体规则的方法,可见深度学习是统计学

    作者: 华章计算机
    发表时间: 2019-06-04 19:06:14
    3592
    0
  • 深度学习的现实应用

    步刷新了深度学习方法在自然语言处理任务上的技术前沿。到目前为止,面向自然语言处理任务的深度学习架构仍在不断进化,与强化学习、无监督学习等的结合应该会带来效果更优的模型。 1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融等)也有很多应用。在生物学研究中,深度学习算法可以

    作者: HWCloudAI
    发表时间: 2020-12-15 15:22:32
    3616
    0
  • 深度学习之批量算法

    促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的 m 个样本都是彼此相同的拷贝。基于采样的梯度估计可以使用单个样本计算出正确的梯度,而比原来的做法少花了 m 倍时间。实践中,我们不太可能真的遇到这种最坏情况,但我们可能会发现大量样本都对

    作者: 小强鼓掌
    317
    1
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1264
    13
  • 适合新手的深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng

    作者: @Wu
    177
    1
  • 深度学习模型轻量化

    等。模型压缩和加速可以从多个角度来优化。总体来看,个人认为主要分为三个层次:1. 算法层压缩加速。这个维度主要在算法应用层,也是大多数算法工程师的工作范畴。主要包括结构优化(如矩阵分解、分组卷积、小卷积核等)、量化与定点化、模型剪枝、模型蒸馏等。2. 框架层加速。这个维度主要在算

    作者: 可爱又积极
    1259
    4
  • 深度学习之批量算法

    机器学习算法和一般优化算法不同的一点是,机器学习算法的目标函数通常可以分解为训练样本上的求和。机器学习中的优化算法在计算参数的每一次更新时通常仅使用整个代价函数中一部分项来估计代价函数的期望值。另一个促使我们从小数目样本中获得梯度的统计估计的动机是训练集的冗余。在最坏的情况下,训练集中所有的

    作者: 小强鼓掌
    972
    3
  • 深度学习是表示学习的经典代表(浅谈什么是深度学习

    目录   先来看机器学习: 什么是特征? 深度学习是表示学习的经典代表: 深度学习的过程: 深度学习与传统机器学习差别: 深度学习代表算法: 先来看机器学习: 机器学习是利用经验experience来改善 计算机系统自身的性能,通过经验获取知识knowledge。 以往都是人们向

    作者: 王博Kings
    发表时间: 2020-12-29 23:39:26
    3406
    0
  • 《Keras深度学习实战》

    实用的角度出发,全方面介绍了如何使用Keras解决深度学习中的各类问题。本书假设读者无任何关于深度学习编程的基础知识,首先介绍了Keras这一高度模块化、极简式的深度学习框架的安装、配置和编译等平台搭建知识,而后详细介绍了深度学习所要求的数据预处理等基本内容,在此基础上介绍了卷积

    作者: 华章计算机
    发表时间: 2019-06-13 17:31:00
    5986
    0
  • 深度学习的挑战

    深度学习挑战 虽然深度学习具有令人印象深刻的能力,但是一些障碍正在阻碍其广泛采用。它们包括以下内容: •技能短缺:当O'Reilly公司的调查询问是什么阻碍人们采用深度学习时,受访者的第一个反应就是缺乏熟练的员工。2018年全球人工智能人才报告表明,“全世界大约有22,000名获

    作者: 建赟
    1653
    2
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习的模型,但是训练好的深度学习模型是怎么部署的

    作者: 初学者7000
    877
    3
  • 深度学习深陷困境!

    年多伦多举行的一场人工智能会议上,深度学习“教父” Geoffrey Hinton 曾说过,“如果你是一名放射科医生,那么你的处境就像一只已身在悬崖边缘却毫不自知的郊狼。”他认为,深度学习非常适合读取核磁共振(MRIs)和 CT 扫描图像,因此我们应该“停止培训放射科医生”,而且在五年内,深度学习会有更大的进步。然而,时间快进到

    作者: 星恒
    250
    3
  • 深度学习:主流框架和编程实战》——1.3 本书涉及的深度学习框架

    1.3 本书涉及的深度学习框架随着深度学习技术的不断发展,越来越多的深度学习框架得到开发。目前,最受研究人员青睐的深度学习框架有TensorFlow、Caffe、Torch和MXNet。TensorFlow框架作为一个用于机器智能的开源软件库,以其高度的灵活性、强大的可移植性等特

    作者: 华章计算机
    发表时间: 2019-06-04 19:30:09
    3048
    0
  • 深度学习初体验

    (NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者可以将“深度学习”称之为“改良版的神经网络”算法。目前主流的深度学习的框架有:TensorFlow、MOA、Caffe、Apache SINGA、PyTorch、Puppet、MXNet、Nervana

    作者: ad123445
    8090
    33
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。

  • 深度学习在环保

    Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一

    作者: 初学者7000
    839
    2