检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Megatron-LM是一个
模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
自定义模型规范 AI Gallery除了支持托管文本生成和文本问答任务类型的模型,还支持托管其他任务类型的模型,其他任务类型的模型被称为自定义模型。但是托管的自定义模型要满足规范才支持使用AI Gallery工具链服务(微调大师、在线推理服务)。 自定义模型的使用流程 托管模型到AI
在训练作业列表中,单击目标训练作业名称,查看该作业的详情。 在左侧获取“输出位置”下的路径,即为训练模型的下载路径。 模型迁移到其他账号 您可以通过如下两种方式将训练的模型迁移到其他账号。 将训练好的模型下载至本地后,上传至目标账号对应区域的OBS桶中。 通过对模型存储的目标文件夹或者目标桶配置策略,
BS)中选择”,元模型选择至model目录,AI引擎选择Custom,引擎包选择步骤3构建的镜像。 图3 创建模型 将创建的模型部署为在线服务,大模型加载启动的时间一般大于普通的模型创建的服务,请配置合理的“部署超时时间”,避免尚未启动完成被认为超时而导致部署失败。 图4 部署为在线服务
自动模型优化(AutoSearch) 自动模型优化介绍 创建自动模型优化的训练作业 父主题: 使用ModelArts Standard训练模型
假设用户于2023年4月1日10:00将创建模型需用到的模型包文件上传至OBS桶中。按照存储费用结算,那么创建的费用计算如下: 存储费用:创建模型的模型包文件通过对象存储服务(OBS)上传或导出,存储计费按照OBS的计费规则。具体费用可参见对象存储价格详情。 综上,模型的费用 = 存储费用 父主题:
在ModelArts上如何提升训练效率并减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与对象存储OBS的交互。可通过如下方式进行调整优化。
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.906)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909)
针对您部署上线的服务,您可以在服务详情页面的“调用指南”中,了解本服务的输入参数,即上文提到的输入请求类型。 图1 查看服务的调用指南 调用指南中的输入参数取决于您选择的模型来源: 如果您的元模型来源于自动学习或预置算法,其输入输出参数由ModelArts官方定义,请直接参考“调
大并发量的场景 AWQ-W4A16 小并发量的低时延场景 更少推理卡数部署的场景 约束限制 表2列举了支持模型压缩的模型,不在表格里的模型不支持使用MaaS压缩模型。 表2 支持模型压缩的模型 模型名称 SmoothQuant-W8A8 AWQ-W4A16 Llama2-13B √
使用MaaS调优模型 在ModelArts Studio大模型即服务平台完成模型创建后,可以对模型进行调优,获得更合适的模型。 场景描述 从“我的模型”中选择一个模型进行调优,当模型完成调优作业后会产生一个新的模型,呈现在“我的模型”列表中。 约束限制 表1列举了支持模型调优的模型,不在表格里的模型不支持使用MaaS调优模型。
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)