检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。
座两层的小木屋,和这里的大部分木质吊脚楼一样,小木屋依山而建。但这座木屋又很“特别”,它有一个“山东哥哥助学工作站”的名字。这座木屋,凝聚了“山东哥哥”与贵州山区儿童之间的情谊,也见证了一位名叫隋刚的淄博“80后”小伙18年来的坚守。", "绝大多数用户的需求往往
适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。
"在贵州黔东南苗族侗族自治州台江县革一镇乡下,有一座两层的小木屋,和这里的大部分木质吊脚楼一样,小木屋依山而建。但这座木屋又很“特别”,它有一个“山东哥哥助学工作站”的名字。这座木屋,凝聚了“山东哥哥”与贵州山区儿童之间的情谊,也见证了一位名叫隋刚的淄博“80后”小伙18年来的坚守。" } 成功响应示例 {
1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机的改进版
买了又买等推荐场景,但各个子场景的运营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景的多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。
一入口鉴权功能和OBS与DIS的委托授权。IAM的更多信息请参见《统一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者的一站式开发平台,排序策略使用Modelarts的深度学习计算能力训练得到排序模型。ModelArts的更多信息请参见《ModelArts服务文档》。
一入口鉴权功能和OBS与DIS的委托授权。IAM的更多信息请参见《统一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者的一站式开发平台,排序策略使用Modelarts的深度学习计算能力训练得到排序模型。ModelArts的更多信息请参见《ModelArts服务文档》。
猜你喜欢的主要应用场景是什么? 猜你喜欢主要应用于浏览意向不明确,如首页推荐等,RES能够根据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 父主题: 智能场景
用来动态调整学习步长。取值范围(0,1],默认值为0.1。 L1正则项系数(lambda1) 是 Double 叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。取值范围[0,1],默认值为0。 L2正则项系数(lambda2) 是 Double 叠加在模型的2范数之上,用
针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。
据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 热门推荐主要应用于当前用户浏览最多的物品内容,如实时搜索量前几的新闻或者物品。
用户根据场景选择不同的推荐实体。 独立的排序模块 独立的基于CTR预估的排序打分模块,支持个性化排序能力。 如何访问RES 您可以通过以下任何一种方式访问RES。 管理控制台 管理控制台是基于浏览器的可视化界面。通过管理控制台,您可以使用直观的界面进行相应的操作。使用方式请参见《推荐系统用户指南》。
特征工程常用于抽取用户、物品的特征和特定算法的特征生成,一般作为某些算法的前置输入条件。 排序策略-离线特征工程 排序策略 排序策略根据不同的算法模型对召回策略或者近线策略生成的候选集进行重排序,得到推荐候选集列表。 排序策略-离线排序模型 在线服务 在线服务用来做线上推荐时的应用,每个服务之
查询训练规格 功能介绍 查询当前推荐系统所提供的离线计算规格,实时计算规格和排序模型训练规格。在创建数据源和场景时,需要提供此信息。 调试 您可以在API Explorer中调试该接口。 URI GET /v2.0/{project_id}/resource-specs 表1 路径参数
优化器类型:ftrl。适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。
Double 用来动态调整学习步长。取值范围(0,1],默认值为0.1。 lambda1 是 Double 叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。取值范围[0,1],默认值为0。 lambda2 是 Double 叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。取值范围[0
描述 offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 响应参数 状态码: 200 表10 响应Body参数 参数 参数类型
RES服务支持按需和购买套餐包,根据用户选择使用的资源进行收费。一个完整的推荐场景需要下面三种资源,均为必选项。套餐的数量可以根据实际业务按需购买。 计算资源:用于推荐作业的计算规格。涉及计费功能包含:数据源、自定义场景、智能场景中的离线计算和模型训练。 存储资源:用于推荐系统数据存储规格。涉及计费功能包括:数据源。
topK 用户最感兴趣的排序在前K个的物品。 行为 行为类型:用户感兴趣的行为类型。 权重值:行为的初始权重。 衰减系数:用于衰减行为初始权重的系数。 有效时间:用户配置的行为发生时间与当前时间的间隔,以小时为单位。系统只处理在该时间范围内的行为记录。 基于用户相似度的实时召回 基于用