检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
使用模型 用训练好的模型预测测试集中的某个图片属于什么类别,先显示这个图片,命令如下。 1 2 3 # display a test image plt.figure() plt.imshow(test_images[9]) 图1 显示用以测试的图片 查看预测结果,命令如下。 1
基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型
导入库模型(平台预置产品模型):您可以使用平台预置的产品模型,快速完成产品开发。当前平台提供了标准模型和厂商模型。标准模型遵循行业标准的产品模型,适用行业内绝大部分厂商设备,而厂商模型针对设备类型发布的产品模型,适用于用行业内少量厂家设备。您可以根据实际需求选择相应的产品模型。 父主题: 开发产品模型
同规格、不同厂商的摄像机上,这是一项非常耗时、费力的巨大工程,ModelArts支持将训练好的模型一键部署到端、边、云的各种设备上和各种场景上,并且还为个人开发者、企业和设备生产厂商提供了一整套安全可靠的一站式部署方式。 图1 部署模型的流程 在线推理服务,可以实现高并发,低延时
Standard模型训练 ModelArts Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。
打包该最优模型包。模型训练任务在进行“超参配置”时,去勾选“超参优化”,三个超参值分别配置为此前记录的最优模型的三个对应超参值。 单击菜单栏的“模型训练”。 进入模型训练界面。 单击模型训练任务所在行。 进入模型训练任务详情界面。 在“模型训练任务”下面,单击最优模型训练任务右侧的图标。
自定义引擎 通过引擎的镜像地址自定义增加引擎。 主入口 训练任务的入口文件及入口函数。 计算节点规格 模型训练服务提供的计算节点资源,包括CPU和GPU。 用户可以单击选定计算节点资源,并在“计算节点个数”中配置计算节点资源的个数。 计算节点个数 计算节点的个数。 1代表单节点计算
模型管理简介 hilens::Model类 模型管理器,使用模型管理器加载模型并进行推理。 #include <model.h> 析构函数 ~Model() virtual hilens::Model::~Model( ) Model析构时会释放掉hiai::Graph等资源。 父主题:
模型管理 模型管理简介 创建模型 模型推理
Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
模型管理 单击菜单栏中的“模型管理”,可在“模型管理”界面查看打包好的模型,如图1所示。 图1 模型管理 父主题: 使用模型训练服务快速训练算法模型
导入和预处理训练数据集 参考TensorFlow官网的教程,创建一个简单的图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import
Editor,可以在里面编辑和运行cell。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
formulas中定义的name 最大长度:128 output_asset_model_id 否 String 输出模型ID,如果输出到本模型可以不携带;使用导入模型和导出模型接口时,该字段无效 最大长度:128 output_asset_model_name 否 String 输出模型名称,
断尝试调整超参来迭代模型;或在实验阶段,有一个可以优化训练的性能的想法,则会回到开发阶段,重新优化代码。 图1 模型开发过程 ModelArts提供了模型训练的功能,方便您查看训练情况并不断调整您的模型参数。您还可以基于不同的数据,选择不同规格的资源池用于模型训练。 请参考以下指导在ModelArts
模型管理 管理模型采集任务 同步数据库和缓存数据 父主题: 应用业务模型使用指导
数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型。 模型训练:使用处理后的数据集训练模型。 超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。
创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。